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Abstract Worst-case execution time (WCET) analysis is a prerequisite
for successfully designing and developing systems, which have to sat-
isfy hard real-time constraints. Of key importance for the precision and
performance of algorithms and tools for WCET analysis are the expres-
siveness and usability of annotation languages, which are routinely used
by developers for providing WCET algorithms and tools with hints for
separating feasible from infeasible program paths.

Reconsidering and assessing the strengths and limitations of cur-
rent annotation languages, we believe that contributions towards further
enhancing their power and towards a commonly accepted uniform an-
notation language will be essential for the next major step of advancing
the field of WCET analysis. To foster this development we have recently
proposed the WCET annotation language challenge. This challenge com-
plements the already earlier successfully launched WCET tool challenge.
In this paper we summarize the essential features of current annotation
languages and recall the WCET annotation language challenge derived
from their assessment.

1 Motivation

The precision and performance of worst-case execution time (WCET) analysis
depends crucially on the identification and separation of feasible and infeasible
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TIMES) under contract No 215068 funded by the 7th EU R&D Framework
Programme.



program paths. This information can automatically be computed by appropri-
ate tools or manually be provided by the application programmer. In both cases
some dedicated language is necessary for annotating this information and making
it available for a subsequent WCET analysis. Languages used for this purpose
are commonly known as annotation languages. Over the past 15 years, an ar-
ray of conceptually quite diverse proposals of annotation languages has been
presented. Many of them have been used for the implementation of a WCET
tool. A comprehensive survey of WCET tools and methods has been given by
Wilhelm et al. [27]. Until recently, however, there was no approach towards a sys-
tematic comparison of the various approaches proposed on annotation languages
for WCET analysis [14].

The goal of our approach of [14] was three-fold: (1) To identify an array
of important universally valid criteria, in which the usefulness of annotation
languages for WCET analysis becomes manifest. (2) To investigate and classify a
selection of prototypical representatives of annotation languages used in practice
along these criteria in order to shed light on the relative strengths and limitations
of the different annotation concepts. (3) Based on these findings to extend the
invitation to researchers working in this field to contribute to the challenge
of designing novel and superior annotation languages, which will support the
development of enhanced WCET algorithms and tools which will outperform
their current counterparts for WCET analysis: The so-called WCET annotation

language challenge.
As pointed out in [14], we believe that mastering the WCET annotation

language challenge will be the key for further advancing the field of WCET
analysis. Moreover, we believe that it will also be essential in order to enable
the recently successfully launched WCET tool challenge, which has attracted
the attention of many WCET tool developers [6,26], to unfold its strength and
impact in full.

In this paper we summarize the essential findings of the comparison of an
array of prototypical annotation languages presented in [14] and the conclusions
drawn from this comparison.

2 Assessment Criteria

The criteria we use in order to assess the strengths and limitations of WCET
annotation languages can be divided into two groups of language design and
usability criteria. While the characteristics of the language design criteria are
essentially under control when designing the language, the characteristics of
the usability criteria are essentially an outcome of the characteristics of the
language design criteria. In addition we consider a singleton third criterion, which
is orthogonal to the other criteria. This is the existence of a tool using the
annotation language. It is worth noting that the availability of a tool need not
directly be related to a specific property or feature of an annotation language.
In fact, there may be manyfold reasons why a tool has been developed, and vice
versa, why not. Actually, these reasons need not necessarily be related to the



language at all. Nonetheless, we consider the availability of a tool an important
indicator of the general usefulness and usability of an annotation language. We
thus report the existence of tools, however, it is beyond the scope of this paper
to assess the quality of any such tool. Readers interested in this might refer to
the article by Wilhelm et al. [27].

Here, we proceed with an overview of the assessment criteria of annotation
languages we use and which we discuss in more detail subsequently.

1. Language Design

(a) Expressiveness
(b) Annotation placement and abstraction level

(c) Programming language

2. Usability
3. Tool Support

Expressiveness. We consider expressiveness of an annotation language the most
important criterion at all. Intuitively, expressiveness refers to the capability of an
annotation language to describe control-flow paths. Key for the expressiveness
of an annotation language is the type of flow information it allows to describe.
We call an annotation language complete, if it allows to precisely describe all
feasible paths of arbitrary terminating programs. The capability of an annotation
language to cope with inter-procedural program flow or selected iteration ranges
of loops are other important aspects of expressiveness. Important setscrews a
language designer can use to control the expressiveness of an annotation language
are the means and their capabilities to deal with loop bounds, triangle loops,
and, more generally, the context sensitivity of loop iterations and procedure or
function incarnations, and the execution order of statements.

Annotation placement and abstraction level. The question of where to place an-
notations and at which level of abstraction has a strong impact on the usability of
an annotation language because it directly affects the demands on a programmer
when using a language.

First, it has to be decided if annotations shall be placed at the location of
the source code statements they describe, or in a separate file? None of the two
options is always superior over its counterpart. As a rule of thumb we have:
If annotations are provided manually, it is usually more convenient to directly
annotate the code. If annotations are computed automatically, it is often prag-
matically advantageous to provide annotations in separate files.

Second, it has to be decided if the source code or the object code shall be an-
notated. Taking a (human-centered) usability perspective, annotating the source
code appears generally preferable. This might be obvious, if code annotations are
manually provided. However, it also holds, if flow information is automatically
computed because it is often obligatory or at least desirable to verify automati-
cally computed annotations manually, e.g., to verify that the correct execution
context has been taken into account.



Closely related to this is the issue of establishing a mapping between source
code and object code: If an object code-based annotation language is used to
express the behavior of constructs of the original programming language it is
necessary to establish a correspondence between the object code and the source
code. This can be achieved e.g. by defining a set of so-called anchors, special
language constructs, which can be recognized after compilation, such as loops
or procedure calls.

Programming language. Restricting a programming language to a well chosen
sublanguage and tailoring an annotation language towards this sublanguage is
an important means to control the expressiveness, precision, and efficiency of
a WCET analysis using this language. For example, an annotation language
can be limited to reducible code. Also the WCET calculation methods which
are compatible with an annotation language can constrain the features of a
programming languages, which can meaningfully be handled. Another source,
which can impose restrictions on the programming language, are the techniques
for the automatic calculation of flow information. For example, a technique might
not support floating point operations.

It is also an important feature of an annotation language if it supports path
analysis of the object code. This is crucial because compared to path analysis
at the source code level this imposes additional challenges at the object code
level. For example, source code typically makes use of high-level control-flow
statements which simplifies the construction of the control-flow graph (CFG)
of a program. For object code, a precise (re-) construction of the CFG requires
usually additional annotations.

Usability. The usability of an annotation language is possibly best reflected by
the skills and the amount and the complexity of work it demands from a pro-
grammer when using it. It is also reflected by the knowledge which is required
beyond the annotation language itself, e.g. about the WCET analysis expected
to make use of it, maybe even of the implementation specifics of this technique
as it might affect its performance. Similarly, this holds for the amount of work
required to update a program annotation in response to an update of the pro-
gram. Another issue referred to concerns the ability to cope with annotations
that are automatically provided by a tool.

In principle, there are two potential classes of users that provide code anno-
tations: Programmers writing manual code annotations, and tools automatically
computing annotations by means of some code analysis.

For code annotations which are to be provided manually it is most important
that the program behavior can be described concisely and compactly. As an
extreme case, the size of an annotation describing a specific program property,
may grow exponentially with the program size. For code annotations which are
automatically computed, it is important that the underlying techniques are able
to deliver their information in a format which is supported by the annotation
language.



It is also an important issue if a WCET calculation method which is compati-
ble with an annotation language can provide the user with adequate information
explaining its results. For example, Integer Linear Programming (ILP) with flow
constraints as very often used in practice can only provide information about
the execution frequency of statements, but not on their execution order.

All this shows that usability is the outcome of the interplay of several fac-
tors, in particular, of the complex interaction of an annotation language and
the possible support for applying this language which is provided by the (tool)
environment it is used in. Assessing the usability of an annotation language thus
implicitly amounts to an assessment of its usability with respect to a specific
global environment, which might even change over time. This, however, is be-
yond the scope of this paper. In addition to usability, we thus introduce a second
more specific term, which we call the intricacy of an annotation language. We
refer to this term in order to assess the language-inherent conceptual and tech-
nical complexity of an annotation language, detached from any environment or
tool support of using it.

Tool Support. As mentioned above, the availability of a tool using a specific
annotation language can be considered an indicator of the general usefulness
and usability of this language. We therefore report the availability of tools but
we do not aim at assessing their quality.

3 WCET Fundamentals

We consider the general typology of current WCET calculation methods and the
types of flow information they rely on as WCET fundamentals which we recall
next.

Types of flow information. Intuitively, flow information provides a WCET cal-
culation method with information about the dynamic behavior of a program.
Typically, the (interprocedural) control-flow graph of a program is used to pro-
vide this information. The various kinds of flow information can roughly be
classified as follows:

1. Explicit execution frequency
2. Explicit execution order
3. Context-sensitive flow information

(a) Loop-context sensitive flow information
(b) Call-context sensitive flow information

Explicit execution frequency information describes the execution count of
nodes or edges of the control-flow graph. In principle, this information can be
given as absolute execution count of a code location or as a relation between the
execution count of one code location and another one. In practice, this kind of in-
formation is usually provided in terms of linear equations between the execution
count of different code locations.



Explicit execution order information describes patterns of execution order of
nodes or edges of the control-flow graph of a program. This information allows
WCET calculation methods to cope with the intricacies of advanced modern pro-
cessors, where the execution time of an instruction can depend on the execution
history.

Context-sensitive flow information is relevant for reliably capturing the effect
of instructions which may be executed multiple times within a program execu-
tion. In principle, two major sources of context-sensitive flow information can
be distinguished: Instructions executed within a loop and instructions executed
within a possibly recursive function or procedure which is called multiple times.

Two examples of concrete flow information are loop bounds and recursion bounds.
Such bounds information is mandatory for any WCET calculation method. It can
thus be considered the minimal flow information necessary for WCET analysis.

WCET calculation methods. WCET calculation methods can roughly be di-
vided into dynamic and static techniques. Intuitively, dynamic methods are
measurement-based and run the program to figure out the worst case execu-
tion time, whereas static methods are analysis-based and compute a bound for
the worst case execution time of a program without running it. In this paper,
we concentrate on static methods. The static methods can roughly be classified
as follows:

1. Timing Schema Approaches
2. Path-based Approaches
3. Implicit Path Enumeration Technique (IPET) Approaches

Timing schema approaches operate on the abstract syntax tree (AST) of a
program. Intuitively, each leaf of the tree representing elementary operations is
assigned an execution time, each inner node an operation allowing to compute
its execution time as a function on the execution time of its successor nodes. This
directly induces a hierarchical approach for computing the worst case exection
time of a program. Historistically, timing schema based approaches were among
the first WCET calculation methods used in practice [22,24,20]. Refinements of
these approaches e.g. towards an improved handling of nested loops have been
proposed more recently [3]. The popularity of the timing schema approaches is
in part due to their conceptual simplicity, which simplifies their implementation.

Unlike timing schema approaches, path-based approaches decompose a pro-
gram into fragments. For each of the fragments they determine a program path
with maximum execution time [7,25]. These times are then combined to the
worst case execution time of the program. Path-based approaches have been de-
veloped for capturing the effects of pipelines, however, they are less appropriate
for taking global timing effects into account, like cache behavior.

Implicit path enumeration technique (IPET) approaches perform an implicit
search for the longest path of a program without enumerating paths explicitly
[16,23]. This distinguishes them from path-based approaches. Intuitively, IPET



approaches model the control flow of a program by constraints. Typically, only
linear constraints are used in order to reduce the complexity of solving the re-
sulting constraint problem. This leads to an integer linear program (ILP), which
can be solved by off-the-shelf open source or commercial ILP solvers.

4 WCET Annotation Languages

In this section we recall the essential features of the seven annotation languages,
which we selected as prototypical representatives for our conceptual comparison
of WCET annotation languages.

1. The Timing Analysis Language TAL
2. The Path Language PL and Information Description Language IDL
3. Linear Flow Constraints
4. SPARK Ada
5. Symbolic Annotations
6. The Annotation Language of Bound-T
7. The Annotation Language of aiT

In the following, we focus on the most relevant key facts concerning these
languages. A more detailed description of these languages and the calculation
methods and tools using them can be found in [14].

The Timing Analysis Language (TAL) has been developed by Mok et al. [18].
It is a timing schema approach. The TAL language is an integral part of the
timing analysis system developed at the University of Texas and is used by the
tool timetool [2].

The Path Language (PL) has been developed by Park and Shaw [24,20,21,19].
It is a path-based approach, which describes feasible and infeasible paths of a
program by means of regular expressions. Later on Park developed a more high-
level variant of PL called Information Description Language (IDL) [19], which
is easier to use than the more low-level PL.

Linear Flow Constraints are typically used by IPET approaches [4,13] as
already discussed in the previous section. We thus proceed with SPARK Ada.
This is a subset of Ada83 which is extended by a special kind of comments which
are used for both program proof and timing analysis. Spark Ada programs can
be analyzed by the Spark Proof and Timing System (SPATS), which is based on
symbolic execution.

Symbolic Annotations is a term which we coined to denote an approach pro-
posed by Blieberger [1]. This approach combines aspects of a pure annotation
language with those of a programming language extension. The clue of this ap-
proach is the invention of so-called discrete loops. These can be considered a
generalized and more flexible kind of for-loops. Exploiting the structural proper-
ties of discrete loops, however, loop bounds can often automatically be computed
by simple mathematical reasoning.

Bound-T is a commercial WCET tool originally distributed by Space Systems
Finland Ltd. It has been developed by Holsti et al. [10,11,9] and is currently



marketed by Tidorum Ltd. A specialty of the annotation language of Bound-T
is that it is designed to be usable both within high-level languages programs and
assembler programs.

The Annotation Language of aiT, finally, is used by the ait WCET tool, a
commercial tool developed by AbsInt Angewandte Informatik GmbH, Germany.
This tool targets different hardware architectures including ARM7, Motorola
Star12/HCS12, and PowerPC 555 [5,8]. A specialty of this tool and its annotation
language is to start from binary files as input to be analyzed.

5 Main Results

Table 1 summarizes the major findings of our comparison of the seven languages
we selected for assessing and highlighting the strengths and limitations of current
WCET annotation languages.

Most of the criteria listed in the leftmost column of Table 1 are self-explaining
or have been discussed before, except of triangle loops and the various kinds of
context-related information.

Intuitively, triangle loops are nested loops which meet a triangular pattern in
the iteration space (i, j). The two IPET-based methods in our comparison, linear
flow constraints and Bound-T, allow a precise description of the behaviour of
triangle loops by allowing the use of equalities and inequalities in the specification
of constraints.

Often the timing behaviour of the first iteration of a loop is different from
that of subsequent iterations, e.g. because of cache effects. Loop context-sensitive

annotations allow to make such differences explicit. Similarly, the bounds of
loops inside of procedures and functions depend often on the values of their
input parameters. Context-sensitive annotations of the calling context allow to
differentiate between the various calling scenarios and thus to obtain more precise
analysis results.

Application context-sensitive annotations, finally, are a specialty used in
SPARK Ada. It refers to a feature called modes which allow to describe multiple
annotations for a function depending on different input parameters. This resem-
bles the scenario of calling context-sensitivity without being exactly the same.
We thus introduced the term application context sensitivity for this feature of
SPARK Ada.

Table 1 illustrates that none of the seven prototypical annotation languages
selected for our comparison uniformly outperforms its competitors. They all have
their own individual strengths and limitations. This became the more apparent,
if we were to take further criteria into account, e.g., the possibility and ease
of reconstructing the control-flow graph on the object-code level such that it
precisely reflects its counterpart on the source-code level [15] or the consideration
of application domains of annotation languages which go beyond pure WCET
analysis as e.g. recently proposed by Lisper [17].



Criteria Annotation Language

TAL PL and IDL Linear Flow

Constraints

Bound-T aiT SPARK Ada Symbolic

Annotations

Chal-

lenge

Expressiveness Timing
schema

Regular
expressions

Constraint-
based

Constraint-
based

Constraint-
based

Loop-
bounds

Loop-
annotations

Loop-bounds yes yes yes yes yes yes yes yes
Triangle-loops yes no yes some yes no yes yes
Calling context yes no possible implicit no explicit no yes
Loop context no no possible no no no no yes
Appl. context no no no no yes yes no yes
Execution order no yes no no no no no yes

Intricacy of
Annotations

high medium to
high

medium medium medium low low to
medium

as low
as pos-
sible

Annot. placement External
TAL-script

Ideally
inside the
source code

Ideally
inside the
source code

External
file

External file;
partially
inside source
code

Source
code
comments

Integral
part of
the source
language

–
D

e
s
ig

n
D

e
c
is

io
n
s

–

Abstraction level
Source code no yes yes no yes yes yes
Object code yes no yes yes yes no no

Program. language
Implementation Asm/C C - C, Ada Asm/C Ada Ada
General Scope - Any

structured
language

Any
structured
language

Any
structured
language

Any
structured
language

- Any
structured
language

Tool available yes no yes commercial commercial yes prototype yes

Table 1. Assessment summary

6 Conclusions

The summary of Table 1 demonstrates that the languages proposed and used
so far for WCET analysis all have their own specific profile of strengths and
limitations. The demand for an annotation language, which combines the indi-
vidual strengths of the known annotation languages, while simultaneously avoid-
ing their limitations, is thus apparent. In Table 1 this demand is reflected by
the right-most column denoted by “Annotation Language Challenge.” It grasps
the summarized strengths of the different annotation concepts. Developing a
language (or an annotation concept), which enjoys this profile is the central
challenge, which we derive from our investigation, and which we would like to
present to the research community.

This challenge, however, is not the only challenge, which is suggested by the
findings of our investigation. It is obvious that an annotation language and a
methodology for computing the WCET of a program based on annotations given
in this language are highly intertwined. Expressiveness delivered by an annota-
tion language, which cannot be exploited by a WCET computation methodology,
is in vain. Vice versa, the power of a WCET computation methodology cannot
be evolved if the annotation language is too weak to express the needed infor-
mation. This mutual dependence of annotation languages and WCET computa-
tion methodologies suggests two further challenges. Which annotation language
serves a given WCET computation methodology best? And vice versa: Which
WCET computation methodology makes the best use of a given annotation lan-
guage?

Of course, the meaning of “best” must be made more precise in order to
be practically useful. We argue that the underlying notion of the relation “bet-



ter” has several dimensions, each of these leading to possibly different solutions.
Besides parameters like ease of use, we consider the parameters of power and
performance and the trade-off between the two most important.

Summing up, this results in the following challenges :

1. Finding an annotation language, which enjoys the individual strengths of
the known annotation languages while avoiding their limitations.

2. Finding an annotation language, which serves a given WCET computation
methodology best.

3. Finding a WCET computation methodology, which makes the best use of a
given annotation language.

It is worth noting that these challenges can be considered on various levels
of refinement, depending for example on the notion of the relation “better” as
discussed above. The challenges above thus represent a full array of more fine-
grained challenges rather than exactly three individual challenges.

In a companion paper published in the present proceedings [12], too, we
make a proposal towards such a new annotation language by highlighting ingre-
dients, which we consider essential for an annotation language that can serve as
a commonly accepted uniform WCET annotation language in the future.
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