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Abstract. Worst-case execution time (WCET) analysis is concerned
with computing upper bounds of the maximum computation time of a
program. This is indispensable for the development of safety-critical real-
time systems, where missing a deadline can have disastrous consequences,
including the loss of lives. Tools for WCET analysis typically analyze the
object-code of a program since this is the code which is actually executed.
Simultaneously, they usually rely on user-provided annotations such as
loop-bounds or execution frequencies of program statements in order
to be effective. From the perspective of a programmer, it is often more
adequate to provide such information on the source code level than on the
object code level. This, however, introduces a gap between the WCET
annotation and the WCET analysis level. Within the CoSTA project
(Compiler Support for Timing Analysis) we are aiming at bridging this
gap. Fundamental to this is to provide appropriate new compiler support
allowing to transform source code annotations into equivalent object code
annotations.
In this paper we outline the approach taken in the CoSTA project to
achieve this. In this project, which has recently been started, the compi-
lation process is decomposed into a high-level machine-independent and
a low-level machine-dependent two-stage process. Here, we will focus on
the first stage of this process, the high-level source-to-source compiler
and the annotation framework.

1 Background and Motivation

For safety-critical real-time systems the timing behavior is as important as the
correctness of the calculations, since the consequences of missing a deadline
can be equally catastrophic as an incorrect calculation, causing even the loss of
lives. Before deploying such a system it is thus indispensable to ensure that the
system meets in addition to its functional constraints also its timing constraints.
Determining the worst-case execution time (WCET) of a program as precisely
as possible is essential for this.

Intuitively, the determination of the WCET of a program is equivalent to
the search for the most time-consuming path in the control flow graph of the
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program. An early approach for WCET analysis is called timing schema [10]. In
this approach, the execution time of each basic block is assumed to be a constant
and the number of iterations of each loop construct to be bounded by an upper
limit, while branches are replaced by the max()-function.

A more sophisticated approach for supplying path information to the WCET
calculation tool is based on linear flow constraints [11]. In this approach the
program flow information - often called flow facts - is expressed as a system of
inequalities that forms the input of an integer linear programming (ILP) problem
that can be solved efficiently by a variety of tools [8]. This method is also called
implicit path enumeration technique (IPET). It is implemented by commercially
available tools like AiT [2] and Bound-T [4].

While it is often possible to automatically extract flow facts from the pro-
gram code, it is usually necessary to require the programmer to (additionally)
manually annotate the program with appropriate flow facts. On the one hand,
this is necessary because the overall problem is undecidable (such as the de-
termination of loop bounds). On the other hand, the programmer might have
additional knowledge about the input data.

State-of-the-art tools perform the WCET-calculation on the object code level,
which is as close as possible to the code that will eventually run on the target
hardware. These tools expect that any user annotations are provided in the
object code. This, however, is very demanding for a programmer and error-
prone. Moreover, it implies to reassure the correctness of the annotations after
each compiler run during the development phase.
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Fig. 1. Bridging the gap between annotation and analysis level

The CoSTA project aims at improving this situation. By developing and
providing suitable compiler support it aims at allowing the user to add the
annotations to the source code of a program which are then – together with the
source code – transformed to the object code level when compiling the program.

In this paper we present and discuss the overall architecture of the system we
develop in the CoSTA project, highlight the essential benefits envisioned, and
discuss important features of the current state of the prototype implementation.
In particular, we highlight the important role of optimizing source-to-source
transformations for the overall approach. They are crucial for generating high-



performance object code and for ensuring portability especially of the first stage
of our approach.

2 The CoSTA-Architecture for Source-based Annotations

As indicated in the previous section, the CoSTA project strives for bridging
the gap between source code annotations and object code WCET calculation.
More specifically, this shall be achieved and demonstrated by developing and
implementing a safe transformation framework for flow facts [5], where we target
a subset of the C++ language as the programming language. The final framework
shall seamlessly interact with existing IPET-based calculation tools.

As discussed before, we expect that such a source-based WCET-annotation
framework makes WCET analysis more easily amenable to a programmer and
overall more effective. In particular, we perceive the following benefits to be of
particular value.

Validation. Automatically computed annotations on the source code level can
easily be verified by the user. The increased trust in the reliability of such an
analysis tool should help to reduce the amount of annotations a user makes
manually.

Refinement. The user can introduce his domain-specific knowledge to provide
additional information which is beyond the scope of the automatic analy-
sis, and which can then be integrated into a cyclic work flow of perpetual
refinement.

Visualization. With applying source-to-source transformations, the user can
conveniently follow the steps of the compiler and thus fine-tune optimization
options according to their impact on the WCET.

Figure 2 illustrates the architecture of the CoSTA approach to achieve these
goals. Fundamental is the decomposition of the system into a high-level source-
to-source transformation framework (first stage) and a low-level WCET-aware
code generation back end (second stage).

This decomposition is motivated by the fact that many optimizations can
be performed at a very high abstraction level; in our case the abstract syntax
tree (AST). This way, the optimization step is independent from the target
machine tool chain, but may still be parameterized to reflect specific machine
characteristics. Moreover, if the WCET-critical optimizations can be moved to
the source code level, it suffices to employ a relatively simple back-end compiler
to finally transform the (optimized) source code into assembly language. We
define WCET-critical optimizations as optimizations that change the control
flow, thus invalidating any annotations (which are in turn assertions about the
control flow graph (CFG)). An example of a CFG-modifying optimization is loop
unrolling, which directly modifies the iteration count of a loop.

First stage. The prototype implementation of the first stage of our system uses
the SATIrE1 framework which is being developed by Markus Schordan at TU
1 http://www.complang.tuwien.ac.at/markus/satire/
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Fig. 2. A schematic overview of the CoSTA architecture

Vienna [13]. Intuitively, SATIrE is a tool environment that integrates the high-
level source-to-source transformation and program analysis framework LLNL-
ROSE2 [14] with other program analysis tools, such as the Program Analysis
Generator (PAG) from AbsInt [9]. For the purpose of the CoSTA project it
is particularly important that SATIrE provides an external representation of
the abstract syntax tree (AST) of a C++ program which can be both written
to and read from. Moreover, this representation uses a syntax which can be
interpreted as terms of the Prolog language. This allows us to specify program
transformations directly in the Prolog language, using predicates to implement a
term rewriting system. In fact, this approach was chosen to implement the first
stage of our prototype.

The LLNL-ROSE framework contains a sophisticated loop optimization tool
which has its roots in the Fortran D compiler. The tool can handle generic C++
programs and outputs C++ code that is very close to the original input; even
templates are preserved. In the current CoSTA implementation, we use this tool
to gain access to high-level optimization functions.

Second stage. The second stage of our system, the code generation back end
is currently being implemented on the basis of LLVM3, a relatively new com-
piler infrastructure based on a low-level virtual machine and SSA graphs that
2 http://www.llnl.gov/CASC/rose/
3 http//www.llvm.org/



Original user-annotated program After loop unrolling with factor 2

int f(int a[]) {
for(int i=0; i<N; i+=1) {

if (a[i] < 0) {
// domain-spec. knowledge
Restriction M1 <= 24
Marker M1;
...

} } }

int f(int a[]) {
for(int i=0; i<N; i+=2) {

if (a[i] < 0) {
Restriction M1 <= 24/2
Marker M1;
...

}
if (a[i] < 0) {

Restriction M2 <= 24/2
Marker M2;
...

} } }

Fig. 3. Transformation of user-specified annotations

is implemented in C++ [7]. We plan to implement a WCET-aware instruction
selection mechanism for complex hardware architectures on this basis. The back
end will only use optimizations that are not WCET-critical. This means, they
will not further modify the control flow graph of the program.

In the course of implementing a safe flow facts transformation framework,
the key component is the CoSTA Annotation Processor which is currently under
implementation. The Annotation Processor takes a user-annotated program and
a sequence of optimizations as input and transforms the annotations according
to a set of rules. It then inserts the updated annotations into the optimized
program source. Figure 3 shows an example of such a transformation.

In the following section we highlight the key components of the first stage of
our system, the CoSTA Annotator and the CoSTA Annotation Processor.

3 The CoSTA Annotator and the CoSTA Annotation
Processor: Extracting and Transforming Flow Facts

The CoSTA Annotator automatically extracts flow facts information of a pro-
gram. The CoSTA Annotator thus offers an alternate route to obtain annotated
source code. In particular, it avoids bothering a user to manually annotate con-
trol flow information which can be automatically extracted from the source code
of the program. In fact, in many cases flow facts like loop bounds can be au-
tomatically found by a static analysis of the program. On the other hand, flow
facts might depend on domain-specific knowledge about input-data which is usu-
ally beyond the scope of static analyses. It is thus worth noting that the CoSTA
Annotator is orthogonal to the CoSTA Annotation Processor. The latter trans-
forms annotations alongside optimizing transformations it applies to a program.
Exemplary, we will now discuss the automatic bounding of loops:

The automatic finding of upper bounds of loop constructs is one of the tasks
of the CoSTA Annotator. Currently, the algorithm operates on counter-based
for-loops. Since C and C++ do not have a strict for-statement in the sense of
Fortran or Pascal, loops have to satisfy a few extra conditions to be analyzable.
These conditions are verified by the Annotator in advance: Each for-statement
consists of initializer, condition, increment and body. The loop has to be in-
duction variable based, i.e., initializer, condition and increment have to modify



and test the same variable. The loop body may not contain a write access to
the induction variable. The initializer may be empty. The loop may not contain
early exits, such as a break or return statement. To give the programmer a little
more flexibility, we provide a preprocessor that transforms while-loops into for
loops in case they satisfy these very conditions. Using the SATIrE-framework,
we were able to implement this preprocessor in very few lines of Prolog.

The implemented loop-bounding algorithm uses two strategies of varying
precision. The first approach uses symbolic evaluation of terms in the source
code to solve the equation Bound = (End − Start)/Step for the induction
variable i. In order to solve the equation, the terms are transformed according
to a set of rules that exploit algebraic properties like commutativity to reduce the
equation term to a single value (Figure 5). In order to reach a fixpoint and thus to
guarantee termination, the rules have to satisfy a monotonicity property. Here,
this means that the term has to shrink with each application of a rule. It should
be noted that this rule-based equation solver is a good example illustrating the
benefits resulting from using Prolog as implementation language. To extract the
necessary information about the possible values of the program variables, every
node in the AST is decorated with a pre- and a postcondition which hold the
possible values of all integer variables. The loop bounds that are shown in the
listing were derived by the symbolic analysis. Often the value of a variable is

1 // {empty}
2 for (int i = 0; i < 42; i += 8) {
3 // {irange ∈ [0..41]}
4 // LoopBound = 6
5 for (int j = i; j < min(42, i+8); j += 1) {
6 // {jrange ∈ [0..41], jsymbolic ∈ [i..i + 8]}
7 // LoopBound = 8
8 }
9 // {j = 42}

10 }
11 // {i = 48}

Fig. 4. Analysis information for loop bounds

known to be within a certain range, as it is the case with the induction variable in
the body of a loop. This range information is important for the second strategy
used by the analysis, which is intended as a fallback in case the first one fails
to find a precise result. Using the range information, it is often still possible
to provide a conservative estimate for many loops. As can be seen in Figure 4,
the analysis information gathered by the two strategies is of varying precision.
While the range information tends to be more pessimistic, it can unfold its whole
potential when it is combined with the equation solver. The major advantage of
the symbolic approach is its ability to cancel out subterms of the equation such
as i in line 6 of the example in Figure 4.

A More Complex Example

We conclude this section with discussing a more complex example, which is
displayed in Figure 6. The original source code of the program consists of three
nested loops that perform a multiplication of two two-dimensional arrays and



% (a+b)-b = a
transformation(sg_subtract_op(sg_add_op(E1 , E2 , _, _), E3, _, _),

E1) :-
term_identical(E2 , E3).

% (v+i1)-i2 = v+i’
transformation(sg_subtract_op(sg_add_op(E1 , E2 , _, _), E3, _, _),

sg_add_op(E1 , E4 , _, _)) :-
isIntVal(E2, X), isIntVal(E3, Y), Z is X-Y, isIntVal(E4 , Z).

...

Fig. 5. Excerpt from the rule base

accumulate the result into a third array. This source code is now processed by the
ROSE loop optimizer (Figure 7). First Loop Blocking is performed, using a block
size of 8, which should improve the locality of the memory accesses, then, the
innermost loop is also being unrolled by a factor of 2. This necessitates an extra
loop to be created to take care of the last element in case the total number of
iterations is odd. Note that ROSE instantiates the uses of the macro N , which is
important for the following step: Compared with the original loop, the resulting
loop conditions are quite complex, but due to their constant bounds, they are
fully analyzable. The Annotator can now traverse the AST top-down and use the
existing information to solve the bounding equations for each for-loop (Figure 8).
Consider the induction variables of the newly generated outer loops; for the loop
bodies, only a range can be found by the analysis. However, this does not affect
the precision of the analysis, since their occurrences in initializer and condition
of the inner loops cancel each other out. For the newly added remainder part
of the innermost loop, the initializer is missing. In this case the analysis has to
use the postcondition of the previous for-statement to know about possible start
values for k.

#define N 50
int i,j,k;
double a[N][N], b[N][N], c[N][N];
...
for (i = 0; i <= N-1; i+=1) {

for (j = 0; j <= N-1; j+=1) {
for (k = 0; k <= N-1; k+=1) {

c[i][j] = c[i][j] + a[i][k] * b[k][j];
} } }

Fig. 6. Phase 1: Original Code

4 Additional Benefits and Outlook

In this section we highlight some additional benefits of our overall approach and
provide an outlook to further extensions.

It is worth noting that the framework presented in the previous sections offers
two alternatives to create correctly annotated optimized code. The first one is to
manually annotate the program, and then to optimize the annotated program. In
this case the CoSTA Annotation Processor will update the annotations alongside
the program optimization transformations. The second one is to first optimize
the program and then to use the CoSTA Annotator to automatically annotate
the optimized program. Figure 9 illustrates both alternatives. This flexibility



int _var_2; int _var_1; int _var_0;
int i; int j; int k;
double a[50][50]; double b[50][50]; double c[50][50];
...
for (_var_1 = 0; _var_1 <= 49; _var_1 += 8) {

for (_var_2 = 0; _var_2 <= 49; _var_2 += 8) {
for (_var_0 = 0; _var_0 <= 49; _var_0 += 8) {

for (i = _var_2; i <= min2(49, _var_2 + 7); i += 1) {
for (j = _var_1; j <= min2(49, _var_1 + 7); j += 1) {

for (k = _var_0; k <= -1 + min2 (49,7 + _var_0 ); k += 2) {
(c[i])[j] = (((c[i])[j]) + (((a[i])[k]) * ((b[k])[j])));
(c[i])[j] = (((c[i])[j]) + (((a[i])[1 + k]) * ((b[1 + k])[j])));

}
for (; k <= min2 (49,7 + _var_0 ); k += 1) {

(c[i])[j] = (((c[i])[j]) + (((a[i])[k]) * ((b[k])[j])));
} } } } } }

Fig. 7. Phase 2: Cache optimized code (Loop Blocking + Unrolling)

...
for (_var_1 = 0; _var_1 <= 49; _var_1 += 8) {

#pragma WCET_LOOP_BOUND 7
for (_var_2 = 0; _var_2 <= 49; _var_2 += 8) {

#pragma WCET_LOOP_BOUND 7
for (_var_0 = 0; _var_0 <= 49; _var_0 += 8) {

#pragma WCET_LOOP_BOUND 7
for (i = _var_2; i <= min2(49, _var_2 + 7); i += 1) {

#pragma WCET_LOOP_BOUND 8
for (j = _var_1; j <= min2(49, _var_1 + 7); j += 1) {

#pragma WCET_LOOP_BOUND 8
for (k = _var_0; k <= (-1) + min2 (49,7 + _var_0 ); k += 2) {

#pragma WCET_LOOP_BOUND 5
c[i][j] = c[i][j] + a[i][k] * b[k][j];
c[i][j] = c[i][j] + a[i][1 + k] * b[1 + k][j];

}
for (; k <= min2 (49,7 + _var_0 ); k += 1) {

#pragma WCET_LOOP_BOUND 2
c[i][j] = c[i][j] + a[i][k] * b[k][j];

} } } } } }

Fig. 8. Phase 3: Automatically annotated optimized code
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Fig. 9. Two routes to optimized annotated source code are provided in CoSTA



and dualism is only possible by using a high-level optimization approach as in
our framework. Note, however, that the high-level approach requires a compiler
back-end that guarantees to preserve the control flow in a way that does not
alter the worst-case timing behavior of the program. Constructing such a back
end is work-in-progress as part of the CoSTA project.

On modern processors, hardware resource allocation conflicts can trigger tim-
ing anomalies, where a locally faster execution increases the total execution time
[16, 12]. Thus, another focus of our work on the compiler back end is to research
scheduling and instruction selection algorithms for increased predictability.

In complex hardware architectures using features such as pipelines or in-
struction and data caches, the timing of an instruction depends highly on the
execution history. Currently, the majority of annotation languages do not allow
to specify explicit execution paths [6]. If these features shall be considered by a
WCET calculation, it will be necessary to undertake a deeper look at annotation
languages. While there are already approaches to integrate execution context in-
formation into the IPET calculation method [1], it will be necessary to create
adequate annotation methods for context sensitive path descriptions as well.

5 Conclusions

The CoSTA project aims at making WCET analysis more effective and more
amenable, especially by lifting the annotation level from the object code level to
the source code level. Experiences with the current prototype implementation
indicate that the chosen system architecture is well-suited to meet these goals.
In particular, our experiences with optimizing source-to-source transformations
indicate that these benefits can be achieved without sacrificing the performance
of the object code of the application programs. Currently, we work on integrating
more refined algorithms for automatic flow facts extraction and further source-
to-source transformations. Simultaneously, we work on connecting the high-level
first stage of our system with its low-level second stage, which will enable us to
link our system to existing WCET analysis tools. As another strand of research
in the CoSTA project we consider the development of advanced annotation lan-
guages which are even more suitable to reach the goals of the CoSTA project.
In fact, investigating the adequacy of the commonly used annotation languages
for this purpose, it turned out that all these languages have their own strengths
and limitations motivating us to rise the annotation language challenge [6] – a
challenge being closely related to and complementing the previously launched
WCET tool challenge [3, 15].
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