
On the Difficulty of Building a Precise Timing
Model for Real-Time Programming ?

Albrecht Kadlec, Raimund Kirner

Institut für Technische Informatik,
Technische Universität Wien, Austria

{albrecht,raimund}@vmars.tuwien.ac.at

Abstract. For real-time computing it is important to know the worst-
case execution time (WCET) of all time-critical software operations in
order to ensure timeliness of the system. The calculation of a precise
upper bound of the WCET relies on the availability of an adequate timing
model of the target hardware.
Within this article we explore the different mechanisms of modern proces-
sors that lead to complex timing models. We explore the different types
of memory elements within a processor that resemble the state of the pro-
cessor. Further, we compare the compile-time knowledge and run-time
knowledge and discuss the consequences of offline (compiler) and online
(hardware) code optimization. The main consequence of this hardware
exploration is that real-time computing needs co-design of compilation,
timing analysis, and processor optimizations to improve temporal pre-
dictability of the system.

1 Introduction

To prove that a real-time computer system is able to meet its deadlines, the worst-
case execution time (WCET) [1] of each time-critical task has to be known. In WCET
analysis, a timing model of the real-time program has to be constructed to calculate
the longest execution path [2]. This timing model depends on the concrete timing of
the target platform hardware.

In case of simple processors where the execution time of an instruction is constant,
one simply has to determine the execution time of each instruction. The WCET of a
program can be calculated by applying a set of hierarchical timing calculation rules,
called timing schema [3]. However, the processors nowadays used in embedded comput-
ing are often much more complex. Hardware features like caches, pipelines, or branch
predictors are also used in embedded processors to achieve high peak performance.

Research in WCET analysis has shown that it is quite feasible to separately model
moderately complex hardware features, e.g., instruction caches [4]. However, even in-
struction caches can become almost impossible to analyze if they use an unpredictable
replacement strategy [5, 6]. Things are becoming worse, if the timing behavior of the
different hardware features is not composable, i.e., the mechanisms influence the timing
behavior of each other. For example, long timing effects may occur, where the timing
variation of an instruction can have an effect on instructions executed much later [7].

?
This work has been partially supported by the Austrian Science Fund (Fonds zur Förderung der
wissenschaftlichen Forschung) within the research project “Compiler-Support for Timing Analy-
sis” (COSTA) under contract P18925-N13.



Still worse, the interaction of different hardware components can also result in counter-
intuitive behavior, like timing anomalies [8–10]. It has already been pointed out in [11]
that there is a misconception thinking that static analysis may provide accurate results
even in case of complex hardware components.

Within this paper we aim to provide guidelines about the temporal analyzability
of different hardware mechanisms of modern processors. In Section 2 we give a general
discussion of why modern processors are increasingly difficult to analyze. In Section 3
we classify the internal states of a processor with regard to analyzability. A comparison
of program optimizations done in software (compiler) and in hardware is given in
Section 4.

2 Sources of Complexity

By discussing the sources of complexity we want to obtain hints, how fast the com-
plexity of timing analysis actually grows. This information is valuable for the planning
of further timing analysis development.

In the following discussions we will use the acronyms BCET , ACET , WCET to
denote the {Best‖Average‖Worst} Case Execution T ime. For the WCET we will
further differentiate between the actual runtime WCET , the theoretically analyzable
WCETA and the WCETC – the actual WCET -bound that can be computed by an
analysis tool with a reasonable amount of analysis time. For these measures, the follow-
ing inequations hold: BCET ≤ ACET ≤ WCET WCET ≤ WCETA ≤ WCETC

2.1 Compile (= Analysis) Time versus Run Time Knowledge

While the offline compile time analysis does have a much wider scope of analysis than
the optimizations done in hardware, the type of knowledge is totally different than at
runtime: it is offline knowledge: everything that depends on input data is unknown and
sets of alternatives must still be considered – like for control flow. The hardware on
the other hand has no or very limited look-ahead, but can peruse already computed
data values – online knowledge. An especially important example is alias analysis: even
the most complex global alias analysis cannot disambiguate all memory accesses. The
hardware just needs a comparator for the already computed addresses. The scope of the
offline optimization is however much greater (e.g.: code motion), justifying the greater
effort. The key observation is that “potential aliasing” is the problem for analysis and
is difficult to handle in software due to incomplete compile time knowledge, while true
aliasing is actually very rare but easily detected and handled in hardware using already
computed values.

To characterize it in few words: offline knowledge is rather large and inherently
imprecise, whereas online knowledge is rather small, but more precise. Thus optimiza-
tions that are based on run-time knowledge are difficult to predict at compile-time,
yielding high complexity for timing analysis.

2.2 Functional Orthogonality does not imply Timing Orthogonality

Hardware is designed as a set of functionally independent blocks that can be designed
independently – with a limited amount of common planning. For the proof of func-
tional correctness, these functional blocks can be considered independently, as each
handles a distinct set of functionality. For timing performance, the average case is



most important. Thus the hardware design process concentrates on the average case
often impairing the worst case.

As soon as timing variations are introduced, all mutually influencing functional
blocks must be considered together for the analysis of guaranteed timing behavior, as
a variation in timing may cause following timing variations. Given such interactions, the
whole system must be analyzed as a whole - leading to a significant rise in complexity.

3 Classification of Processor State
The combination of the observations of Section 2.1 and Section 2.2 adds another layer of
complexity, as the combined analysis is necessary, but without precise detailed knowl-
edge being available. Still all timing behavior is closely related to processor state: a
stateless processor is trivially free of timing variations (except maybe following physi-
cal variations). Thus it is beneficial to classify the different parts of processor state to
assess the type and amount of its contribution to the complexity of the timing analy-
sis. This may help to decide trade-offs in hardware design: a specific feature should be
omitted from a timing-oriented design, if its contribution to analysis complexity is not
justified by its contribution to performance.

In the following we factor out specific properties that can be used to judge the
effect of a given instance of processor state:

Explicit Architectural State – The most prominent example are the architec-
tural register files. As this state is architecturally visible, it is handled explicitly by
code generation and by timing analysis and thus no unforeseen timing variations can
occur. The same is true for pipeline registers in an explicitly pipelined architecture
(e.g.: Digital Signal Processor – DSP): As pipeline hazards are exposed on the archi-
tectural level, they are explicitly known at compile time and analysis time and handling
can be moved to software alone.

Implicit, Hidden, Implementation-specific State – This kind of state is
excluded from the architectural description and thus to a great deal hidden from the
tool chain. However, the classification as “implementation detail” is incorrect with
respect to the timing behavior of the implementation. Examples of hardware features
with implicit state are: pipelines, caches, hidden registers (e.g.: for renaming)

Although bad in nature, there are some additional properties of this hidden state,
that can make a big difference for the complexity of timing analysis:

Stability: This property tells, whether knowledge of the state stabilizes and converges
again after unknown events. Then, after a limited sequence of known events, the state
is known again.

Resilient/stable – local influence: Even if a state is reached that is not analyzable
with offline knowledge, after a limited number of events, the state is again known
and analyzable. Examples are true Least-Recently-Used (LRU) caches and local-only
branch prediction.

Fragile/unstable – global influence: If the precision of knowledge does not increase
again after an unknown event but rather degrades even further although the following
events are known, we call it unstable. The reason of this behavior is due to algorithms,
that have a shared state component that retains history data, reusing data from pre-
vious events, thus linking otherwise independent events with each other in the context
of timing analysis. The general pattern can be described as the mixing of otherwise



independent events for efficiency-of-hardware-implementation reasons. Examples are
the replacement history bits in pseudo LRU and Pseudo Round Robin (PRR) caches,
the global history shift register of branch prediction algorithms.

Distribution / Connectivity: The number of clients, that use a feature clearly has an
influence of the distribution of timing variations:

Shared / central – global influence: A feature or device that has more than one client
which are served from the same common state, clearly connects its clients in terms of
timing behavior: events from one client can now influence the other ones. This leads to
a fast spreading of timing variations into logically disconnected client units. Example
are shared 2nd and 3rd level caches that serve instruction-, data- and translation-
lookaside-buffer accesses, so that a complex common analysis is required, which then
in turn suffers from phase ordering problems between code and data accesses.

Unshared / decentral – local influence: e.g.: Harvard-architecture caches only impose
a feedback on shared pipeline state via instruction delays. Code and data accesses do
not directly influence each other.

Decision Density & Granularity: A fine granularity means a potentially high density
in time of – for the timing analysis with its limited knowledge – adversary events. This
means a fast buildup of (potential) effects, if the events are independent: the interval
[BCET, WCET ] is drifting farther apart with each event. The sheer number of events
leads to a very large search space, if detailed analysis is required for preciseness reasons,
raising the complexity of the analysis.

4 Influence of Optimizations in Hardware and Software
Simple optimizations improve on all of the timing measures more or less equally. Exam-
ples are simple expression simplification but also induction variable elimination or non-
speculative partial redundancy elimination: the BCET is most likely improved along
with ACET , WCET and WCETC . Advanced optimizations use heuristics and/or pro-
file feedback to guess the typical average case to improve the ACET , ignoring the effect
on all other timing properties. Focussing on the worst-case execution time properties,
the negative effect of optimizations can be three-fold:

1. Most often there is a direct increase in the (rare) WCET .
That is the trade-off that is accepted, when focusing on the ACET alone.

2. Then there can be an indirect increase of the WCETA:
Here, timing analysis simply does not have enough knowledge at code generation
time to prove beneficial cases that occur at run time and are exploited by hardware,
leading to pessimistic overestimations that degrade WCETA.

3. Last, there can be an indirect increase of the WCETA through second-order effects:
An increase of complexity can create new phase-ordering problems that further
compromise the WCETA.

WCETC may degrade faster than WCETA when the specific analysis method used by
the employed tool is especially sensitive to the problem changes.

To control the effect of optimizations, a compiler framework should actually be de-
signed with these influences in mind. That means classification of each optimization so
that WCET -increasing optimizations can be inhibited for WCET -aware compilation.
This avoids increasing WCET or WCETA. However WCETC can still suffer, as the
compiler is not aware of which analysis tool will be used.



Thus, as a second goal for a WCET -aware tool chain, WCET -analysis should be
integrated into code generation, so that even such tool-specific degradations can be
avoided – either by not doing the offending optimizations or by improving the specific
timing analysis in the context of this optimization.

As a synergistic effect, many potential WCET -increasing optimizations can be
allowed again in case they do not lie on the critical path and do not lead to a change
in the critical path. In addition, execution-time-balancing optimizations are enabled as
a new class of optimizations, i.e., given good estimates, it is possible to slow down an
uncritical fast path to improve the critical worst-case path.

4.1 The Inappropriate Hardware / Software Interface

Compiler

Frontend

High Level Optimizer

Backend
Instruction Selection

Register Allocation

Timing Analyzer

Hardware

Instruction Fetch

Instruction Reorder

memory disambiguation

schedule

issue

Operand Fetch with RegisterRenaming

Execute

Write Back and In-Order Commit

(a) HW optimizations after analysis

Compiler

Frontend

High Level Optimizer

Backend

Instruction Selection

Register Allocation

Instruction Scheduling

Timing Analyzer

Hardware

Instruction Fetch

Operand Fetch

Execute

Write Back

(b) Optimizations done in software before
timing analysis

Fig. 1. Phase Ordering of Timing Analysis and Optimizations

Figure 1(a) explains the fundamental phase ordering problem introduced by hard-
ware optimizations: Timing analysis happens after SW-optimizations, but before HW-
optimizations. The former can be accounted-for, the latter must be forecasted with
incomplete (analyze time = compile time!) knowledge, inevitably resulting in impre-
ciseness. Thus timing analysis preciseness is actually a function of hardware complexity,
demanding simplified hardware as depicted in Figure 1(b), if the preciseness is to be
improved.

When implicit implementation state is changed to explicit architectural state, the
main loss is the loss of binary compatibility - not an issue in the embedded real time
domain. The loss in usable performance is probably also not very high: i.e. the per-
formance guaranteed after timing analysis may actually increase, as the elimination of
pessimism in timing analysis may easily outweight the small benefit of online optimiza-
tions over their offline counterparts.

4.2 The Mismatch of Hardware Reality and Analysis Reality
The current situation for timing analysis capabilities versus complexity of current hard-
ware is highlighted in Table 1. The table shows, that there is a wide gap between prop-
erties of current hardware [12] and the current capabilities of timing analysis. While



the most complex CPUs are typically not used in embedded real time systems, most
CPUs that are actually used, have one or more problematic features, like a Pseudo
Least-Recently-Used (PLRU) cache replacement strategy [6].

timing analysis capability current hardware

Caches
levels 1 level up to 3 levels

separation separated (Harvard) 2nd & 3rd level combined
associativity 2-way up to 16-way
replacement LRU [5] PLRU, PRR

Branch Prediction
history local 2-bit saturating mixed local / global
locality local only mixed local / global / tournament

Table 1. Analysis Capabilities and Current Hardware

According to Moore’s law, transistor count doubles every 18 months due to hard-
ware improvements, improving performance in turn. According to Proebsting’s law,
performance doubling due to compiler technology happens only every 18 years. While
both “laws” are heavily disputed and criticized for their extrapolation, they neverthe-
less express the industrial reality of the past thirty years.

While compiler technology employs a lot of phases that separately handle distinct
aspects in order to reduce overall tool complexity and compile time, timing analysis is
more and more forced to integrate such phases to keep its precision high. Furthermore,
timing analysis may be forced to be merged into the code generation tool chain to
improve overall WCET results. Thus it is obvious that the complexity of timing analysis
is rising at least as fast as the complexity of compilers. Thus it is highly unlikely, that
analysis precision can catch up with the imprecision caused by already present hardware
features and even less so with future features.

The obvious alternative is to employ co-design of code generation, timing analysis
and hardware design, i.e., add only hardware features that do not unduly raise the
complexity of timing analysis. This way a better balanced system can be designed with
better overall WCET properties of the software / hardware stack consisting of code
generation tools, timing analysis tools and hardware.

5 Summary and Conclusion

Within this article we explored the different mechanisms of hardware features in order
to classify the internal state of a processor. The results are aimed to provide insights
into the sources of processors’ complex timing behavior. They may help hardware
designers in designing more predictable embedded processors.

Analyzing the internal state of the processor, it is the implicit, hidden portion
of the processor state that causes the main challenges of constructing a precise and
tractable timing model of the processor. The explicit state fraction of the processor
state is easier to handle, because first, it is adequately documented and second, it can
typically be calculated by analyzing only local instruction sequences of the program
code instead of having to analyze the whole program execution. Another challenge is
the dynamic code optimization performed by a processor. Timing analysis has to keep
track of the execution history in order to reason about the processor state. However,
since abstractions have to be used in practice to make the analysis tractable, it is not
possible to keep a detailed execution history.



Given the complexity that stems from imprecise offline knowledge, interaction of
otherwise disconnected features in the timing domain, fast propagation and distribu-
tion through highly interactive/interconnected features, large search spaces stemming
from high decision density, timing analysis complexity is growing much faster than hard-
ware design complexity. With this development, there will be no light on the horizon
for timing analysis to keep up in modeling the temporal behavior of the processors.
On one side it is relatively easy to develop complex hardware due to the functional
modularity of the hardware building blocks. But on the other side, WCET analysis
becomes increasingly complex due to the growing challenge of constructing a feasible,
precise timing model of the processor. As a possible way out of this dilemma, co-design
of compilation, timing analysis, and processor optimizations has been proposed.

References

1. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckman, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenstrom, P.: The worst-case execution time prob-
lem - overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS) ((Accepted January 2007))

2. Kirner, R., Puschner, P.: Classification of WCET analysis techniques. In: Proc. 8th
IEEE International Symposium on Object-oriented Real-time distributed Comput-
ing, Seattle, WA (2005) 190–199

3. Puschner, P., Koza, C.: Calculating the maximum execution time of real-time
programs. The Journal of Real-Time Systems 1 (1989) 159–176

4. Mueller, F.: Timing analysis for instruction caches. Real-Time Systems Journal
18 (2000) 209–239

5. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of proces-
sor architecture on the design and results of wcet tools. Proceedings of the IEEE
91 (2003) 1038–1054

6. Berg, C.: PLRU cache domino effects. In: Proc. 6th International Workshop on
Worst-Case Execution Time Analysis, Dresden, Germany (2006)

7. Engblom, J., Jonsson, B.: Processor pipelines and their properties for static WCET
analysis. In: Proc. 2nd Embedded Software Conference, Grenoble, France (2002)
LNCS 2491, Springer Verlag.

8. Lundqvist, T., Stenström, P.: Timing analysis in dynamically scheduled micro-
processors. In: Proc. 20th IEEE Real-Time Systems Symposium (RTSS). (1999)
12–21

9. Wenzel, I., Kirner, R., Puschner, P., Rieder, B.: Principles of timing anomalies in
superscalar processors. In: Proc. 5th International Conference of Quality Software,
Melbourne, Australia (2005)

10. Reineke, J., Wachter, B., Tesing, S., Wilhelm, R., Polian, I., Eisinger, J., Becker,
B.: A definition and classification of timing anomalies. In: Proc. 6th International
Workshop on Worst-Case Execution Time Analysis, Dresden, Germany (2006)

11. Kirner, R., Puschner, P.: Discussion of misconceptions about WCET analysis. In:
Proc. 3rd International Workshop on Worst-Case Execution Time Analysis, Porto,
Portugal (2003) 43–46

12. Hennessy, J.L., Patterson, D.A.: Computer Architecture - A Quantitative Ap-
proach. 4th edn. Morgan Kaufmann (2007)


