
The CoSTA Transformer: Integrating
Optimizing Compilation and WCET Flow Facts

Transformation

Adrian Prantl?

Institute of Computer Languages
TU Vienna, Austria

adrian@complang.tuwien.ac.at

Abstract. The determination of the worst-case execution time (WCET)
of a program is a critical issue for the design of safety-critical real-time
systems. Because the exact timing of the program depends on the low-
level hardware instructions, tools that automatically calculate an upper
bound for the WCET typically operate on the object code level. In order
to get tighter WCET estimates, these tools often rely on control flow
annotations, also called flow facts, which can be provided manually or
by a tool. For the programmer, it is more convenient to provide flow facts
directly at the source code level. To make this possible, it is necessary to
extend the compiler to transform the source-based flow facts alongside
the program optimizations. In this paper, we introduce an approach that
integrates optimizing compilation and flow fact transformation, called
the CoSTA Transformer. Our approach is designed to operate on a very
high level of abstraction and thus can easily be adopted to different
compiler/target-machine combinations.

1 Motivation

The determination of the worst-case execution time (WCET) is a critical issue for
the design of safety-critical real-time systems. The calculation of an upper bound
for the WCET can be achieved by searching the longest path in the control-flow
graph (CFG) of a program. To do this, it is necessary to annotate the CFG with
flow information such as upper bounds for loop constructs. This information is
commonly called flow facts. Flow facts can either be calculated automatically
by a tool through a static analysis or they can be provided manually. Although
a remarkable amount of flow facts can be extracted from the program sources,
the programmer may always have additional domain-specific knowledge (such as
characteristics of the input data) that will result in a tighter WCET bound.

Flow facts can be supplied at different levels of abstraction. From the point
of view of the WCET-calculation tool, it is important that the information will
be available at the object-code level, which is as close as possible to the program
? This work has been supported by the Austrian Science Fund (Fonds zur Förderung

der wissenschaftlichen Forschung) under contract P18925-N13.

that will eventually be executed on the target hardware. For the programmer, it
would obviously be more convenient to supply information at the highest level
of abstraction possible, ideally directly in the source code. The compiler then
has to translate these annotations to the object code level. This implies that
the annotations are transformed alongside the optimizations. Such an approach
has recently been proposed by Kirner [4]. This way of providing annotations at
a high level of abstraction is not yet implemented by state-of-the-art industrial
tools, as indicated by a survey on WCET calculation tools [2, 12]. This is likely
to change, however, and a first step towards an implementation based on the
compiler’s low-level intermediate representation was presented by Schulte [11]
earlier this year.

As an integral part of the CoSTA project (Compiler Support for Timing
Analysis) we are working on integrating the transformation of flow facts with
optimizing compilation. For the implementation of our approach, we have de-
cided to work on a very high level of abstraction which allows us to maintain
a high degree of flexibility regarding the choice of the compiler infrastructure
and target hardware. More details about our overall architecture and the static
analysis of flow facts has been presented earlier in a companion paper [8].

2 Implementation Environment

In this section we introduce the two frameworks we are building upon. The first
framework we are using is Llnl-Rose, a source-to-source program transforma-
tion framework for C++, which is being developed at the Lawrence Livermore
National Laboratories [10]. Llnl-Rose uses the C++ front end by the Edison
Design Group (EDG) and is also written in C++. For the implementation of the
program transformations we are using the loop processor of the Llnl-Rose dis-
tribution. It operates on the C++ abstract syntax tree (AST) and can perform
a variety of standard loop transformations including loop unrolling, blocking,
fusion, interchange and also partial redundancy elimination [1, 6].

The second framework is SATIrE (Static Analysis Tool Integration Engine).
It is currently being developed at our group and aims at integrating Llnl-
Rose with program analysis frameworks such as the Program Analysis Genera-
tor (PAG) from AbsInt [9, 7].

In the context of CoSTA, it is important to note that SATIrE supports
the export and import of the AST provided by Llnl-Rose in the form of an
external term representation that is using the very same syntax as the Prolog
programming language. These terms, which represent program fragments, can
easily be manipulated by a Prolog program and allow for the construction of
transformation tools that can be formulated very efficiently. The external repre-
sentation in combination with our term manipulation library forms a framework
that we call Termite. The CoSTA Transformer, in particular the extraction
(“unweaving”), transformation and reintegration (“weaving”) of the annotations
has been implemented using our Termite framework.

3 Architecture of the CoSTA Transformer

Viewed as a whole, the CoSTA Transformer accepts C++ sources intermingled
with user-specified (or tool-delivered) annotations as input and will generate op-
timized C++ code containing correctly transformed annotations. Figure 1 repre-
sents a schematic overview of the components of the CoSTA Transformer. This
section gives an overview of the data flow between the individual components,
which conceptually can be considered to consist of 4 phases:

[file.C]

C++ with
Annotations

[file.C]

C++ Source

[annots.pl]

Annotations

[file.C]

Optimized
C++

[annots.pl]

Transformed
Annotations

[file.C]

Optimized
C++ with
Annotations

TERMITE (1)

unweave

LLNL-ROSE (2)

optimize

TERMITE (3)

transform

TERMITE (4)

weave

[trace.pl]

Optimization
Trace

Fig. 1. The data flow between
the components of the CoSTA
Transformer

Phase 1 - unweave. In preparation for the sub-
sequent steps, the C++ code has to be stripped
off any annotations. This allows us to integrate
our annotation transformer without the need
for extensive modifications of the optimizer.

Phase 2 - optimize. In the next step, the Llnl-
Rose loop processor is invoked to perform a va-
riety of optimizing program transformations on
the stripped C++ sources. The loop processor
has to be modified for our approach to gener-
ate a trace listing the transformations that were
performed on the original sources. This opti-
mization trace will then be read by the annota-
tion transformer, which additionally takes the
annotations that were stripped off the original
C++ sources as input.

Phase 3 - transform. The annotations will then
be transformed according to a body of rules
that specify how to update annotations for
the transformations found in the optimization
trace. These rules need to be specified only once
for each program transformation that is imple-
mented in the optimizer. The rules are generally
very short, but might become more complex if
the optimization duplicates basic blocks in the
program. An example of both a simple and a
more complex rule is displayed in Figure 3.

Phase 4 - weave. After the annotations have
been transformed, the only task left is to insert the annotations back into the
optimized C++ sources - this is done in the final step.

As shown in the diagram, the actual transformation of annotations is kept
separate from the optimization of the program. This decision allows for a very
concise and clean implementation of the annotation transformation; additionally
it also allows us to easily link the annotation transformer to other compiler
frameworks. The compiler that compiles the output of the CoSTA Transformer
has to be restricted to program transformations that preserve the (annotated)
control flow.

3.1 Classification of Annotations

Up to this point we have discussed the high-level view of our approach. We
will now show how the actual transformation of flow annotations works. In the
context of the CoSTA Transformer, we define three types of annotations that
are inspired by the definition of wcetC, but with a slightly altered syntax to
resemble Prolog terms more closely [3]:

– Markers are labels for the very basic blocks they are defined in.
– Restrictions are inequalities that are used to describe the ratios between the

execution frequencies of markers. In contrast to markers, the location of a
restriction declaration in the source code is not significant. Restrictions are
expressions that are composed of arithmetic and Boolean operators that can
contain markers as operands.

– Loop Bounds are a special class of restrictions. They can be interpreted as
a shorthand for the equation mthis = bloop · mparent scope. Loop Bounds
thus express the ratio between the basic block they are defined in and the
surrounding parent scope.

These annotations represent the lowest common denominator of current anno-
tation languages, and were thus selected to illustrate our approach. However,
we are also researching different types of annotation languages [5] and plan to
extend our tools in the future to reflect this. A typical WCET-calculation tool
would use these annotations to formulate an integer linear programming (ILP)
problem that can then be solved efficiently by existing third-party tools.

The optimizations that are performed by the Llnl-Rose Loop Processor
impose different requirements on the CoSTA Transformer. In general, we can
distinguish three kinds of transformations, which always/never/sometimes mod-
ify the control flow graph (CFG) and the annotated information. If a program
transformation alters the CFG, for example by fusing two loops of identical it-
eration space into a single new loop, it is necessary to update the location of the
annotations to the newly created loop. If a loop is unrolled by a factor that is
a integer divisor of the iteration count, the locations of the basic blocks in the
CFG will not necessarily change, but the information described by the contained
annotations has to be adjusted accordingly.

Affects Loop Unrolling Loop Blocking Loop Fusion

Control flow graph maybe yes yes
Annotation location no yes yes
Annotation information yes yes no

3.2 Transformation of Annotations

How to update the location of the annotations can generally be induced from
the optimization trace that has to be provided by the program transformation
component. The optimization trace consists of statements that summarize which
basic block has been affected by which kind of optimization. The annotation
unrolled(MLoopBody, 2) means that the loop body MLoopBody has been unrolled

Original user-annotated program After loop unrolling with factor 2

int* f(int* a)
{

int i;
#pragma wcet_marker(m_func)

for (i = 0; i < 48; i += 1) {
#pragma wcet_loopbound (48)
#pragma wcet_marker(m_for)

if (test(a[i])) {
#pragma wcet_marker(m_if)

// Domain -specific knowledge
#pragma wcet_restriction(m_if =< m_for /4)

a[i]++;
}

}
return a;

}

int *f(int *a)
{

int i;
for (i = 0; i <= 47; i += 2) {

#pragma wcet_marker(m_f_1_1)
#pragma wcet_loopbound (24)

if ((test(a[i]))) {
#pragma wcet_marker(m_f_1_1_1)
#pragma wcet_restriction(

m_f_1_1_1+m_f_1_1_2=<m_f_1_1 /2)
a[i]++;

}
if ((test(a[1 + i]))) {

#pragma wcet_marker(m_f_1_1_2)
#pragma wcet_restriction(

m_f_1_1_1+m_f_1_1_2=<m_f_1_1 /2)
a[1 + i]++;

}
}
return a;

}

Fig. 2. Illustrating Example: Flow annotations before and after loop unrolling

by a factor of 2. This implies that the transformation rules can be adopted to
consider implementation details of the optimizations.

The update of the annotations is handled by the rule body. Rules can be
defined to be parameterized on the optimizations. It is also possible for a rule to
generate more than one annotation - this is typically the case for loop unrolling,
where copies of annotations have to be inserted in the repeated loop bodies. After
the rules have been applied, the resulting annotations are routed through a term
replacement system that performs algebraic simplifications to the transformed
annotations.

3.3 Illustrating Example

Figure 3 shows an excerpt of the rules we implemented for loop unrolling. The
rules in this example are parameterized to take the label of the unrolled loop
body and the unroll factor. They are written in Prolog and are applied to each
annotation of the original program. The first rule updates the loop bounds ac-
cording to the unroll factor k, whereas the second rule clones restrictions for
each unrolled basic block in the loop body. The program on the right of Figure
2 shows the effect of applying these rules to the program on the left.

% loop unrolling
unrolled(M, K, annotation(M, wcet_loopbound(Bound)),

[annotation(M, wcet_loopbound(New))]) :-
New is ceiling(Bound/K).

unrolled(M_Loop , K, annotation(M_Annot , wcet_restriction(Term)), NewAnnots) :-
replace(Term , M_Loop , M_Loop*K, Term1),
(nested_in(M_Annot , M_Loop) ->

list_from_to (1, K, Ns),
maplist(unroll_clone(M_Loop , M_Annot , Term1), Ns , NewAnnots);
NewAnnot = []).

Fig. 3. Example from the transformation rules: loop unrolling

4 Conclusions

In this paper, we have presented a modular and portable approach to integrate
the automatic transformation of hand-annotated WCET flow fact information
with optimizing compilation. Our implementation is still at an early stage, how-
ever, our experiences indicate that this approach is well suited to support the
important class of classical loop optimizations. As the next step, we will concen-
trate on integrating the transformation of annotations (CoSTA Transformer)
with our static program analysis component (CoSTA Analyzer [8]).

Acknowledgements. The author would like to thank Markus Schordan for
many discussions concerning the Llnl-Rose and SATIrE frameworks, and Jens
Knoop for discussions and helpful comments on earlier versions of this paper.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann, 2001.

2. J. Gustafson. The WCET tool challenge 2006. In Preliminary Proceedings 2nd
Int. IEEE Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, pages 248 – 249, Paphos, Cyprus, November 2006.

3. R. Kirner. The programming language wcetC. Technical report, Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 2002.

4. R. Kirner. Extending Optimising Compilation to Support Worst-Case Execution
Time Analysis. PhD thesis, Technische Universität Wien, Treitlstr. 3/3/182-1,
1040 Vienna, Austria, May 2003.

5. R. Kirner, J. Knoop, A. Prantl, M. Schordan, and I. Wenzel. WCET Analysis: The
Annotation Language Challenge. In Proceedings 7th Int’l Workshop on Worst-Case
Execution Time (WCET) Analysis, 2007. To appear.

6. J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion (with retrospective). Best
of PLDI, SIGPLAN Not., 39(4):460–472, 2004.

7. F. Martin. PAG – an efficient program analyzer generator. International Journal
on Software Tools for Technology Transfer, 2(1):46–67, 1998.

8. A. Prantl. Source-to-Source Transformations for WCET Analysis: The CoSTA
Approach. In Proceedings 24th Workshop of “GI-Fachgruppe Programmiersprachen
und Rechenkonzepte”, 2007.

9. M. Schordan. Combining tools and languages for static analysis and optimiza-
tion of high-level abstractions. In Proceedings 24th Workshop of “GI-Fachgruppe
Programmiersprachen und Rechenkonzepte”, 2007.

10. M. Schordan and D. J. Quinlan. A source-to-source architecture for user-defined
optimizations. In L. Böszörményi and P. Schojer, editors, JMLC, volume 2789 of
Lecture Notes in Computer Science, pages 214–223. Springer, 2003.

11. D. Schulte. Modellierung und Transformation von Flow Facts in einem WCET-
optimierenden Compiler. Master’s thesis, Universität Dortmund, 2007.

12. L. Tan and K. Echtle. The WCET tool challenge 2006: External evaluation – draft
report. In Handout at the 2nd Int. IEEE Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, Paphos, Cyprus, November 2006.

