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Abstract

Worst-case execution time (WCET) analysis is in-
dispensable for the successful design and development
of systems, which, in addition to their functional con-
straints, have to satisfy hard real-time constraints. The
expressiveness and usability of annotation languages,
which are used by algorithms and tools for WCET anal-
ysis in order to separate feasible from infeasible pro-
gram paths, have a crucial impact on the precision
and performance of these algorithms and tools. In
this paper, we thus propose to complement the WCET
tool challenge, which has recently successfully been
launched, by a second closely related challenge: the
WCET annotation language challenge. We believe that
contributions towards mastering this challenge will be
essential for the next major step of advancing the field
of WCET analysis.

Keywords: Worst-case execution time (WCET)
analysis, annotation languages, WCET tool challenge,
WCET annotation language challenge.

1 Motivation

The precision and performance of worst-case execu-
tion time (WCET) analysis depends crucially on the
identification and separation of feasible and infeasible
program paths. This information can automatically
be computed by appropriate tools or manually be pro-
vided by the application programmer. In both cases
some dedicated language is necessary in order to an-
notate this information and make it amenable to a
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subsequent WCET analysis. Languages used for this
purpose are commonly known as annotation languages.
Over the past 15 years, an array of conceptually quite
diverse proposals of annotation languages has been pre-
sented. Many of them have been used for the imple-
mentation of a WCET tool. A quite comprehensive
survey of WCET tools and methods has been given by
Wilhelm et al. [28]. Until now, however, there has been
no systematic comparison of the various approaches
proposed on annotation languages for WCET analysis.

We believe that this lack is not only a hurdle for
students and researchers entering the field of WCET
analysis, but that it also constrains the further progress
and advancement of the field. In fact, after roughly two
decades of vibrant and vigorous research we consider
closing this gap a major step both for consolidating
the state-of-the-art and for providing a new and strong
stimulus for further advancing it.

The purpose and the contributions of this paper are
thus three-fold: First, to identify an array of impor-
tant universally valid criteria, in which the usefulness
of annotation languages for WCET analysis becomes
manifest. Second, to investigate and classify a selec-
tion of prototypical representatives of annotation lan-
guages used in practice along these criteria in order to
shed light on the relative strengths and limitations of
the different annotation concepts. And third, most im-
portant and directly based on these findings, to extend
the invitation to researchers working in this field to
contribute to the challenge of designing novel and su-
perior annotation languages, which will allow the devel-
opment of even more general and powerful algorithms
and tools for WCET analysis.

In addition to providing a thorough, yet smooth and
survey-like introduction to annotation languages used
in WCET analysis for newcomers to this field, we hope
that this endeavor will in fact significantly contribute to
attracting the attention of researchers who are working
in this field to the challenge, which we call the WCET
annotation language challenge: the design of novel,
elegant, and easy to use powerful annotation languages.

In spite of the tremendous success the research on



WCET analysis has had in the past, and the maturity
and usefulness WCET tools have already achieved and
proved in practice, we believe that the major next step
to further advance their power and widespread dissem-
ination in academia and industry depends crucially on
the availability of more expressive and more easily use-
able annotation languages, which can truly seamlessly
be integrated into the tool chain of WCET analysis.
We consider the identification of the most important
and useful features of annotation languages, the choice
of a superior mix, the development and in the long-
run the standardization of a language based thereon a
major challenge for researchers working in the field of
WCET analysis.

In this paper we present this challenge as the WCET
annotation language challenge to the WCET research
community. As pointed out, we believe that mastering
it will be the key for further advancing the field of
WCET analysis. But in fact, we also believe that
mastering it will be essential in order to enable the
recently successfully launched WCET tool challenge,
which has attracted the attention of many WCET tool
developers [9, 26], to unfold its strength and impact in
full.

2 Assessment Criteria

In this section we introduce and discuss the criteria,
which we use throughout this paper to assess the merits
of the annotation languages and mechanisms consid-
ered. We separate these criteria into the two groups of
language design and usability criteria. While the char-
acteristics of the criteria of the first group are under
control when designing the language, the characteris-
tics of the criteria of the second group are essentially an
outflow of those of the first one. Additionally to these
two groups of criteria, we consider a third and orthog-
onal issue: the existence of a tool using the annotation
language. This is not directly related to a specific prop-
erty or feature of an annotation language. In fact, the
reasons why a tool has been developed, and vice versa,
why not, are many-fold. They are not necessarily re-
lated to the language at all. Nonetheless, we consider
the availability of a tool an indicator of the general use-
fulness and usability of an annotation language. Inde-
pendently of this, it is also valuable as an information
on its own. It is worth noting, however, that we do not
assess the quality of these tools. This is indeed beyond
the scope of this paper. Readers with a deeper interest
in WCET tools are invited to refer to the (forthcom-
ing) article by Wilhelm et al. presenting a survey of
WCET methods and tools [28].

2.1 Language Design

Expressiveness: We consider this the most impor-
tant criterion at all. Intuitively, expressiveness reflects
the capability of an annotation language to describe
control-flow paths. Especially important is here, which
type of flow information can be described and which
one cannot. Completeness is an important notion in
this context. It requires that the annotation language
allows to precisely describe all feasible paths of arbi-
trary terminating programs. Other important issues
are the capability of an annotation language to cope
with inter-procedural program flow or selected itera-
tion ranges of loops.

Important setscrews, which allow a language de-
signer to control the expressiveness of an annotation
language, are the means and their capabilities for deal-
ing with loop bounds, with triangle loops, and, more
generally, with context sensitivity and the execution
order of statements. We consider all these through-
out this paper. See Section 3.1 for additional details.

Annotation placement: The form of this criterion –
where to place annotations – has an immediate strong
impact on the usability of any annotation language.
This becomes obvious when thinking in terms of the
programmer’s effort to use a language.

The first design decision, which has to be made here,
is the following: shall code annotations be directly
placed at the locations of the source code they describe,
or shall they be provided in a separate file? None of
the two options is always superior and thus consistently
preferable to the other. As a rule of thumb: a) if
annotated manually, it is usually more convenient to
annotate the source code, b) if annotated automatically
by appropriate tools, the usage of separate files often
turns out to be advantageous.

The second design decision concerns the issue of an-
notating the source code or the object code. From
a (human-centred) usability perspective, source code
annotations are generally preferable. This appears to
be obvious, if code annotations are manually provided.
But it also holds, if flow informations are automati-
cally computed by a tool. The reason is that it is often
obligatory or at least desirable to verify these annota-
tions manually, e.g., to verify that the correct execution
context has been taken into account.

Host language: Restricting the features of the host
language, which can be handled, is an important op-
tion when designing an annotation language in order
to control the expressiveness, precision, and efficiency
of subsequent WCET analyzes using the language. In
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effect, this means to restrict the host language to a sub-
set. Annotation languages, for example, can be limited
to reduceable code. Host languages, however, are often
constrained in another way, too: by the WCET calcula-
tion methods which are compatible with the annotation
language at hand. Similarly, also techniques for the
automatic calculation of flow information impose of-
ten further restrictions on the host language. Floating
point operations, for example, might not be supported
by an annotation language.

Besides this, it is another important issue if the
annotation language supports path analysis of the ob-
ject code. This is crucial because it imposes additional
challenges compared to path analysis at the source code
level. Different from object code, for example, source
code typically uses high-level control-flow statements
which allow for a simple calculation of the control-flow
graph (CFG). For object code, additional annotations
are necessary to reconstruct the CFG precisely.

2.2 Usability

Programmer’s effort: The usability of an annotation
language is possibly best reflected by the skills and the
amount and the complexity of work it demands from
a programmer when using it. We summarize this, ad-
mittedly soft, criterion under the catch phrase program-
mer’s effort. It also refers to the knowledge which is
required beyond the annotation language itself, e.g. of
the WCET analysis expected to make use of it, maybe
even of the implementation specifics of this technique
as it might affect its performance. Similarly, this holds
for the amount of work required to update a program
annotation in response to an update of the program.
Another issue referred to concerns the ability to cope
with annotations which are automatically provided by
a tool.

In principle, there are two potential classes of users
that provide code annotations: a) humans, who write
manual code annotations, and b) tools that calculate
annotations by means of code analysis.

Considering manual code annotations it is quite im-
portant that the program behavior can be described
concisely and compactly. As an extreme case, the size
of an annotation describing a specific program prop-
erty, may grow exponentially with the program size.
When using automatic techniques to calculate code an-
notations, it is important whether the techniques are
capable to produce information in a format which is
supported by the annotation language.

When post-processing the calculated WCET results,
it is an important issue whether the WCET calculation

methods compatible with the annotation language are
able to provide the user with information explaining
the WCET results. Standard use of ILP (cf. Section
3.4.3) with flow constraints, for example, can only
provide information about the execution frequency of
statements, but does not provide any information on
the execution order.

2.3 Tool Support

As mentioned above, the availability of a tool us-
ing a specific annotation language can be considered
an indicator of the general usefulness and usability of
this language. In particular, it is an information which
we consider valuable on its own. In general, we be-
lieve that the efficiency of the known WCET calcula-
tion methods, which are compatible with an annotation
language, is one of the most relevant factors driving the
development of tools. It is also worth noting, however,
that vice versa the efficiency of a specific WCET cal-
culation method depends much on the specifics of the
underlying annotation language. Obviously, this holds
for annotation languages, which require the program
structure to be unrolled in order to make the code
annotation applicable. We would like to remind the
reader that we are not aiming at assessing the quality
of tools in this paper.

3 WCET Fundamentals

In this section we recall the essentials of flow in-
formation and of WCET calculation methods. This
provides the foundation for reviewing the annotation
languages we selected as prototypical representatives
of the different annotation concepts. To enable this,
we first divide the different kinds of flow-information
into three types (Section 3.1), and then characterize
the flow information which must be supported at a
minimum by any reasonable annotation language (Sec-
tion 3.2). The precision of flow information is limited
by the completeness of the annotation language (Sec-
tion 3.3). Subsequently, we describe the essence of the
fundamental WCET calculation methods used in prac-
tice (Section 3.4).

3.1 Types of Flow Information

The static description of a program’s control flow
is given by its control-flow graph and its call graph.
To calculate the WCET of a program also information
about the dynamic control-flow behavior is needed. In
WCET analysis, flow information about the dynamic
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control flow is typically used to partially describe the
following program behavior:

Explicit execution frequency. This type of flow in-
formation describes the execution count of nodes
or edges of the control-flow graph. Execution
count information can be given, for example, as
the absolute execution count of a code location, or
as a relation between the execution count of one
code location and another code location. In prac-
tice, information on execution frequency is formu-
lated as linear equations between the execution
count of different code locations.

Explicit execution order. This type of flow infor-
mation is concerned with describing patterns of
execution order of nodes or edges of the control-
flow graph. The execution order of statements is
significant on modern processors where the execu-
tion time of an instruction depends on the execu-
tion history.

Context-sensitive flow information. This refers
to the control flow of instructions that may
be executed multiple times within a program
execution. In greater detail, we can distinguish
two sources of context-sensitive flow information:
instructions executed within a loop and instruc-
tions executed within a function which is called
multiple times.

• Loop-context sensitive flow information de-
scribes the control-flow behavior of a loop
body for a subrange of all possible loop it-
erations.

• Call-context sensitive flow information de-
scribes the control-flow behavior of a function
for specific call locations.

3.2 Minimal Flow Information

Besides the control-flow description of a program,
the only additional flow information mandatory to
bound its WCET are boundaries of the execution fre-
quency of cycles in the description of the syntactical
control flow. For intra-procedural WCET analysis, the
control-flow graph (CFG) is used as control-flow de-
scription; for inter-procedural WCET analysis the su-
per graph is used, which is a combination of the call
graph and the CFG of each subroutine.

In case of reducible loops [1] so-called loop bounds
are used to describe the maximum iteration count of
loops. Annotating other cyclic control-flow like recur-
sive function calls or non-reducible loops is less intu-
itive.

3.3 Completeness of an Annotation Language

The completeness of an annotation language is con-
cerned with the question of how precise the set of fea-
sible control-flow paths of programs can be described
by a flow annotation language. Given a flow anno-
tation language which does not allow to describe the
set of feasible paths precisely, one has to use over-
approximations, representing a superset of the set of
feasible paths. Lacking completeness in the flow de-
scription will generally result in an overestimation of
the WCET.

3.4 WCET Calculation Methods

The type of interesting flow information depends
much on the applied WCET calculation method. In the
following we describe the three most important WCET
calculation methods.

3.4.1 Timing Schema

The timing schema approach turned out to be an ef-
ficient WCET calculation method that can also han-
dle programs with recursive control flow [22, 24, 21].
Essentially, the timing schema consists of hierarchi-
cal WCET calculation rules for each node of the syn-
tax tree representing elementary or composed state-
ments. Denoting the local WCET bound of a node
A by T (A), the local WCET of the sequential com-
position A; B of two nodes A and B is computed
as T (A) + T (B). Analogously, the local WCET of
a conditional statement if A then B else C fi; is
computed as T (A) + max (T (B), T (C)), while the lo-
cal WCET bound of a loop while A do B od; with
at most LB iterations (loop bound) is computed as
(LB + 1) · T (A) + LB · T (B). Last but not least, if A
represents an elementary statement, T (A) is simply the
maximum execution time of A. Of course, the timing
schema can analogously be formulated to calculate the
best-case execution time. The computational complex-
ity of the timing schema is linear with the program size.
It can thus be applied efficiently to large programs.

A refinement of the timing schema approach to han-
dle nested loops more precisely has been presented by
Colin and Puaut [6].

3.4.2 Path-Based WCET Calculation

Path-based WCET calculation [10, 25] is inspired by
the naive approach of analyzing each program path
and selecting the longest out of it as the WCET bound.
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Though this approach is infeasible for the whole pro-
gram, it becomes realistic for local scopes of a pro-
gram. Thus, the idea of path-based WCET calculation
is to search for the longest path within each innermost
scope. For example, each loop could form a scope.
Once the longest path of a scope has been determined,
the whole scope is treated as a single instruction with
the execution time of the longest path assigned to it.
This procedure is repeated till the whole program is
analyzed.

Path-based WCET calculation has been developed
to analyze the effects of pipelines. It allows to model
the impact of the pipeline to an instruction sequence
longer than just basic blocks, and thus increases the
precision of the WCET bound. However, path-based
WCET calculation is inappropriate to take rather
global timing effects into account, like cache behavior.

3.4.3 IPET-Based WCET Calculation

The implicit path enumeration technique (IPET) has
been introduced by Li and Malik [15], as well as by
Puschner and Schedl [23]. In contrast to path-based
WCET calculation where paths are explicitly enumer-
ated, IPET performs an implicit longest path search.

The basic idea is to model the control flow of the
program by constraints. To reduce the complexity, typ-
ically only linear constraints are used, i.e., the program
is represented as an integer linear program (ILP). Sub-
sequently to this basic modelling, supplemental flow in-
formation can be included smoothly as additional con-
straints of the ILP problem. The finally formulated
ILP problem is passed to an ILP solver that computes
the desired WCET bound. Due to the broad availabil-
ity of commercial and open-source ILP solvers, such
ILP problems can be solved conveniently.

4 WCET Annotation Languages

Together with Section 5 and Section 6, Section 4
represents the core of this paper. In this section we
reconsider a selection of prototypical representatives of
the different annotation languages (Section 4.1 to 4.7).
The findings of this reconsideration will then be the
basis of our conceptional comparison of these languages
in Section 5.

4.1 TAL - Equations with Event Markers

Mok et al. describe the Timing Analysis Language
(TAL) [18]. This is an integral part of the timing
analysis system developed at the University of Texas.

The timing analysis system uses the timing schema ap-
proach and consists of several tools retrieving informa-
tion that is to be used as input for the timetool, which
eventually performs the calculation of the execution
time of the analyzed program.

While timetool itself works only on assembler code,
the tool set also contains a modified C compiler to
translate annotated C programs to annotated assem-
bler programs. The annotations of the C code are au-
tomatically generated by the annotate tool that fills
in default assumptions about the program’s behavior.
The compiler generates the annotations of the assem-
bler code in form of a TAL script. Usually, this script
is not yet useful for the analysis since it contains too
conservative estimates. It has thus to be refined by a
more powerful tool or by hand to get better results. To
aid the user with this task, a graphical user interface
is provided.

Finally, the script is interpreted by timetool to calcu-
late the execution time of the program. A very detailed
description of the language can be found in [5].

1 main() { // -v-L1:
2 int i=0, j=0; 3
3 while (i < 100) { // -v-L3:
4 if (i < 10) j++;
5 i++;
6 } // -^-L6:
7 } // -^-L7:

Figure 1. Example C-Source

Figure 1 shows a simple C-program taken from [18]
that will serve us as an example. The automatically
generated TAL-script is displayed in Figure 2. The
script contains references to labels that occur in the
assembler output of the compiler. We have also in-
serted the locations of these labels into the C-source in
Figure 1.

1 func TAL_main() {
2 block blk1;
3 loop lp1;
4
5 blk1#begin = "-v-L1";
6 blk#end = "-^-L7";
7
8 lp1#begin = "-v-L3";
9 lp1#count = MAXINT;
10 lp1#end = "-^-L6";
11
12 return(blk_1time);
13 }

Figure 2. Autogenerated TAL-Script for the
program in Figure 1

As can be seen in Figure 2, the language offers the
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following data types for timing purposes: A loop de-
scribes a loop construct where the execution frequency
depends on the data being processed. A block is a pro-
gram fragment that may contain loops, but the exe-
cution time of the block must be fixed. The language
then also defines an action, which is any larger program
fragment whose execution time is of interest. TAL dis-
tinguishes primitive and composite actions.

Each object is associated a set of attributes, such
as the time and (loop-)count expressions. The syn-
tax of assigning an attribute is object#attribute =
expression.

In the example, there are two obvious modifications
a programmer can be expected to make to the auto-
generated script. First, replacing MAXINT as loop count
attribute of lp1 by a more accurate value.
9 lp1#count = 100;

Second, changing the calculation formula in the last
line of the script to reflect the fact that the inner if-
statement is executed only ten times:

12 return (loopcount - if_count)*blk#2time;

It is an interesting feature of the annotation lan-
guage that it allows to specify nearly perfect execution
time bounds, since the formula may contain almost any
expressions. This creates new responsibilities for the
programmers, who have to devise the correct calcula-
tions on their own.

4.2 Path Language and IDL

Park and Shaw proposed a WCET analysis for a sub-
set of the C language, compiled by the GCC compiler
for the MC68010 processor [24, 21, 19, 20]. They also
developed the timing schema recalled in Section 3.4.1
for calculating the WCET of a program.

4.2.1 Path Language

Park and Shaw took much care in order to allow the
specification of (in)feasible program paths. They devel-
oped a so-called path language (in the following called
PL) based on regular expressions, which is shown in
Figure 3. The basic idea is to label instructions inter-
esting for path characterization with labels. Using PL
one can describe path patterns, representing a set of
paths.

Multiple occurrences of a pattern can be abbrevi-
ated, e.g., A2−4 is a short hand for AA+AAA+AAAA.
Using this convention, it can be easily expressed, for ex-
ample, that a loop, where the beginning of the body
is labelled LB, has an iteration count of at most 10:
(LB )0−10.

path ::
a regular expression of symbols

symbols ::
alphabets(Σ) : a set of code labels
operators : +, ·, !, ∩, ¬
parenthesis : (, )
empty set : ∅
wild cards :

∗ . . . arbitrary string of labels: (Σ)!
. . . any string of code labels not containing

its surrounding labels,
i.e., x y = x(Σ− {x, y}) ! y

’ ’ may be also used as unary operator:
y = (Σ− {y}) ! y, x = x(Σ− {x})!

(Note the difference between the Kleene star ‘!’ and the

wildcard ‘∗’ !)
Figure 3. Path language based on regular expres-

sions [20]

A key feature of PL is that it allows to describe pat-
terns of explicit execution order of labeled statements.
In fact, it is complete, i.e., it allows to describe all paths
of terminating programs.

A drawback of PL is that even common path pat-
terns can result in very long expressions. For example,
linear flow constraints like fi < fj (i.e., control-flow
edge fi is executed less frequently than edge fj) can
only be described by explicitly enumerating all possi-
ble path combinations containing fi and fj.

Path analysis based on regular expressions can be
rather computation-intensive. Every path information
Ii represents a set of paths IP i. The path analysis is
done by intersecting the set of syntactically possible
paths AP with the set of paths described by all the
path informations IP =

⋂
i IP i. The set of feasible

paths XP is then calculated as

XP = AP ∩ IP

The problem with this approach is that the central path
processing operations ¬ and ∩ require exponential time
in general [17]. Park and Shaw thus found that PL in
its generic form results in expressions too complex for
path processing. Therefore, they complemented PL
with a higher level information description language,
which we are going to recall next.
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4.2.2 Information Description Language (IDL)

In order to overcome the deficiencies of PL, Park
et al. developed the information description language
(IDL), which can be translated into a structured sub-
set of PL [20]. For example, the information that
label A and B can only be executed together is ex-
pressed in IDL as samepath(A,B). This is trans-
lated to the equivalent low-level PL-expression (∗A∗)∩
(∗B∗)+¬(∗A∗)∩¬(∗B∗). As another example, a loop
of scope A with constant iteration count K is written as
loop A K times. This is translated into the low-level
expression ¬(∗A∗) + ( A.entry A.body( A.body)K) ! .
This transformation of loop information also illustrates
the difficulty of getting descriptions using low-level
regular expressions right. In fact, the original trans-
formation given in [20] is faulty, as it does not take
care of the case that a loop may be nested within an-
other loop. The original translation was like ¬(∗A∗) +
A.entry A.body( A.body)K , which in case of nested

loops would erroneously exclude paths with multiple
executions of the loop.

The strength of IDL (as well as of PL) is that they
both allow to describe path patterns of explicit execu-
tion order. However, IDL inherits a significant weak-
ness from PL: information about relative execution fre-
quencies of code can only be expressed by explicitly
enumerating all possible path patterns, which can be of
exponential length. An example illustrating this phe-
nomenon is shown in Column 4 of Table 2 (Bench-
mark B2).

4.3 Linear Flow Constraints

Linear flow constraints are used in the context of
IPET WCET calculation methods. The general ILP
problem representing the program execution consists
of n decision variables x1, ..., xn, an objective function
Z =

∑n
i=i ci ·xi that has to be maximized, m functional

constraints
∑n

j=1 aijxj ≤ bi for all i ∈ [1, m] with
aij being integer constants, and the non-negativity
constraints xi ≥ 0.

To model the WCET calculation as an ILP problem,
the static program structure is reflected by the control-
flow graph G = (V, E), having a unique start node
s ∈ V and a unique termination node t ∈ V . The
execution time of each edge 〈i, j〉 ∈ E is denoted by ti,j .
Denoting the execution frequency of edge 〈i, j〉 ∈ E
as fi,j, the WCET of a program P is given by the
following objective function to be maximized:

wcet(P ) = max
∑

〈i,j〉∈E

fi,j · ti,j

The key idea to map the WCET calculation prob-
lem onto the general ILP problem is formulating the
CFG structure as flow equations. For that purpose,
the structure of the CFG is represented as functional
constraints in the ILP problem. The CFG resulting
from the source code of benchmark B1 and B2 (Ta-
ble 2) is used as example CFG within this section. For
each node exactly one flow equation is generated stat-
ing that the sum of the execution frequencies of incom-
ing control-flow edges equals the sum of the execution
frequencies of the outgoing edges. For instance, for
node 5 this equation is f4,5 = f5,6+f5,8. To model that
the program is executed exactly one time we set the fre-
quency of the back edge 〈14, 1〉 to one, i.e., f14,1 = 1.

To get the WCET bound, an ILP solver is used
to calculate the length of the longest possible path
through the CFG. However, in the CFG the length of
this path is not bounded due to the cycle introduced
by the back edge 〈12, 4〉 ∈ E of the loop. Thus, it is
required to add a constraint limiting the iteration count
(and thus the frequency f12,4). This is accomplished
by adding an additional constraint of the form f12,4 ≤
LOOP BOUND · f2,4. This so-called loop bound is a
mandatory flow fact to calculate a WCET bound.

After this step, the obtained model can be solved
by an ILP solver. There exist many implementations
of such solvers, for instance the GNU Linear Program-
ming Kit (GLPK). Figure 4 shows the resulting ILP
problem of benchmark B1 and B2 (Table 2). The corre-
sponding ti,j represent the execution times of the edges
〈i, j〉 ∈ E and are the coefficients of the respective fi,j

within the objective function (in this example, for all
edges 〈i, j〉 ∈ E it holds that ti,j = 1).

This example illustrates that flow facts are indis-
pensable for providing a limit on the number of the
loop iterations whenever loops are present. Engblom
et al., for example, proposed an approach being able
to automatically extract control-flow information and
constraints from a program that can be used by IPET
methods [7]. The annotation language used by this
approach is discussed next.

4.3.1 Modeling Contexts within Flow Con-
straints

The annotation language developed by Engblom and
Ermedahl allows to represent flow facts over all iter-
ations of a loop as well as over some specific itera-
tions [7]. In particular, it also allows to specify flow
facts for irreducible control flow. For WCET analysis
the flow facts are converted to a format suitable for a
WCET calculation method based on the implicit path
enumeration technique (IPET) (cf. Section 3.4.3). En-
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Maximize

etime: 1 f1_3 + 1 f3_4 + 1 f4_5 + 1 f5_6 + 1 f5_8 +
1 f6_9 + 1 f8_9 + 1 f9_10 + 1 f10_11 + 1 f11_12 +
1 f10_12 + 1 f12_4 + 1 f4_13

Subject To
f13_1 - f1_3 = 0
f1_3 - f3_4 = 0
f3_4 + f12_4 - f4_5 - f4_13 = 0
f4_5 - f5_6 - f5_8 = 0
f5_6 - f6_9 = 0
f5_8 - f8_9 = 0
f6_9 + f8_9 - f9_10 = 0
f9_10 - f10_12 - f10_11 = 0
f10_11 - f11_12 = 0
f10_12 + f11_12 - f12_4 = 0
f4_13 - f13_1 = 0

f13_1 = 1 \* Artificial back edge *\
f12_4 - 100 f3_4 ≤ 0 \* Loop bound *\

f5_6 - f10_11 = 0 \* Constraint B1 *\
f5_6 - f5_8 ≤ 0 \* Constraint B2 *\

End

Figure 4. ILP problem for the CFG of benchmark
B1 and B2 in Table 2.

gblom and Ermedahl assume that flow-analysis is per-
formed prior to low-level analysis, meaning that flow
analysis does not have access to information about the
execution time of code. The outcome of the flow anal-
ysis is a set of statically feasible paths. The WCET
calculation uses information about the execution time
of each piece of code to find the paths in the set of
statically feasible paths that correspond to the actual
worst-case execution times.

To represent the dynamic behavior of a program En-
gblom and Ermedahl introduce the concept of a scope.
A scope has a header node that dominates all nodes in
the scope and corresponds to a certain repeating exe-
cution environment, such as a function call or a loop.
All scopes are supposed to be looping, even if they just
iterate zero or one time. Each scope is represented
by a set of nodes and edges. Scopes are connected
by edges according to the control flow in the program.
Every scope has a set of associated flow information
facts. A flow information fact consists of three parts:
i) the name of the scope, where the fact is defined, ii)
a context specifier, and iii) a constraint expression. A
context specifier allows to specify the iterations of the
scope in which the constraint expression must be valid.
The specifiers are defined using two dimensions of type
and iteration space. The type allows to specify that the
fact is considered a sum over all iterations, or for each
single iteration separately. The iteration space is the

set of iterations of the scope it is valid for. This can ei-
ther be all iterations or some specified range. The flow
information specified by annotations is converted to a
form appropriate for IPET by mapping the scope-local
semantics to execution-global semantics.

4.4 Data Value Assertions used in SPARK Ada

Chapman et al. described a WCET analysis for
SPARK Ada [3, 4], the programming language used
in the Spark Proof and Timing System (SPATS). The
SPARK1 language is a subset of Ada83 that is extended
by a special kind of comments. The annotations are
used for both program proof and timing analysis. Like
the program proof framework, the WCET calculation
in SPARK Ada is based on symbolic execution.

The edges of the control-flow graph of the input
program are provided with weights that describe the
execution time of the corresponding instructions. To
keep flexibility, the weights in the CFG are given in the
form of symbolic expressions instead of specific timing
values; this representation has the advantage of being
independent of the target hardware.

The static semantics of the SPARK language ensures
that the programmer places at least one assertion be-
fore every loop statement as well as preconditions and
postconditions to each function. These assertions are
called cut points. Thus, the control-flow graph can be
decomposed into a set of cut points and basic paths
connecting them.

The problem of finding the WCET is equivalent to
finding the longest path of the extended control-flow
graph, which can be solved by a simplified version of
the algorithm described by Tarjan [27]: through a set
of transformation rules, an acyclic directed graph is
mapped to a regular expression that is used to find
the shortest path. The dual problem is considered in
SPARK. To handle loops, a special bounded iteration
operator is included in the regular expression syntax.
Chapman gives three graph rewriting rules [3] to col-
lapse alternatives, inner loops and outer loops to a sim-
plified graph containing fewer edges, but more complex
regular expression as weights. SPARK Ada expects the
programmer to supply annotations for the loop bounds.

Figure 5 shows an example taken from [4] of a pro-
gram calculating the power function. A distinct feature
of the language is the inclusion of modes. SPARK Ada
allows the user to specify multiple behaviors for a func-
tion that may be called from different contexts or with
different input values. For each mode, the user can

1SPARK is an acronym for SPADE Ada Kernel, where
SPADE is a short hand for Southampton Program Analysis De-
velopment Environment.
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1 --# proof function pow(FLOAT,INTEGER) return FLOAT;
2 function POWER(BASE: in FLOAT;
3 EXPONENT: in INTEGER) return FLOAT
4 --# pre true;
5 --# mode A (EXPONENT >=0);
6 --# mode B (EXPONENT < 0);
7 --# post (POWER = pow(BASE,EXPONENT));
8 is
9 ONE: constant FLOAT := 1.0;
10 EXCHANGE: BOOLEAN;
11 L_RES: FLOAT;
12 L_EXP: INTEGER;
13 RESULT: FLOAT;
14 begin
15 L_RES := ONE;
16 if EXPONENT ≥ 0 then
17 EXCHANGE := FALSE;
18 L_EXP := EXPONENT;
19 else
20 L_EXP := -EXPONENT;
21 EXCHANGE := TRUE;
22 end if;
23 --# loopcount(L EXP);
24 loop
25 --# assert
26 --# ((not EXCHANGE) -> (L RES = pow(BASE,(EXPONENT
- L EXP)))) in A;

27 --# & (EXCHANGE -> (L RES = pow(BASE,(-EXPONENT -
L EXP)))) in B;

28 exit when L_EXP = 0;
29 L_RES := L_RES*BASE;
30 L_EXP := L_EXP-1;
31 end loop;
32 if EXCHANGE = TRUE then RESULT := ONE / L_RES;
33 else RESULT := L_RES; end if;
34 return RESULT;
35 end POWER;

Figure 5. An example of an annotated
SPARK Ada program as given in [4]

specify a distinct set of annotations; thereby enabling
a more precise analysis.

Due to the nature of the annotations, however, it is
not possible to specify tight bounds for nested loops,
where the iteration space of the inner loop depends on
the state of the outer loop.

4.5 Symbolic Annotations

Blieberger proposed an approach, which combines
aspects of a pure annotation language with those of a
programming language extension [2]. The clue of this
approach is the invention of so-called discrete loops.
Discrete loops can be considered a generalized kind of
for-loops. Discrete loops allow a very flexible update of
the loop-variable, much more flexible as for a for-loop.
Nonetheless, like for for-loops, also for discrete loops
the loop bounds can often automatically be computed
by means of reasonably simple mathematical reasoning.

Particularly well-suited for this purpose are methods
for symbolic analysis. We thus coin the term symbolic
annotation for this approach here.

The following program fragment illustrates the
essence underlying the concept of discrete loops:

1 k:= ...;
2 discrete h := k in 1..N/2
3 new h := 2*h | 2*h+1 loop
4 <loop body>
5 end loop

Marked by the new key word discrete the expres-
sion following the initialization of the loop variable h
specifies the range both the initial value of h as well as
all other values of h during subsequent iterations of the
loop must be inside. Once the value is outside of this
range, the loop terminates. This captures the language
extension portion of this concept. The annotation lan-
guage portion is captured by the term following the
keyword new. This term specifies the set of legal val-
ues of the loop variable of immediately adjacent loop
iterations. In the example above, the new value must
be either the result of doubling the old value (2*h),
or the increment of this value (2*h+1). The semantics
given to discrete loops requires that these constraints
are validated at compile-time, or checked at run-time,
if the former fails.

A very appealing feature of this approach is the
seamless integration of the annotation and the pro-
gram source text. This elegance, however, comes at
the cost that algorithms, whose textbook version may
often make deliberate use of arbitrary loops, have to
be adopted or replaced by newly invented algorithms
which comply with the programming discipline im-
posed by discrete loops. Depending on the algorithmic
problem, this can be natural and easy, but sometimes
also difficult and challenging, or impossible at all.

4.6 The Annotation Language of Bound-T

In [12], Holsti et al. introduce Bound-T, an industri-
ally available WCET tool originally developed by Space
Systems Finland Ltd and currently marketed by Tido-
rum Ltd. Bound-T operates on the object-code level
and relies on debug information and additional asser-
tions provided by the programmer.

The analysis is performed in three distinct phases.
First, a control-flow analysis is performed to construct
the call-graph of the program. The WCET calcula-
tion is then performed bottom-up on the call-graph.
Bound-T cannot handle cyclic call graphs.

In the next step, iteration bounds for the loop con-
structs in the program are calculated. In some cases
these bounds can be found by the data flow analysis
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that is implemented in Bound-T. In this step, the se-
mantics of the loop body is expressed as the functional
composition of the effect of the individual statements,
which are expressed in Presburger arithmetic, a decid-
able subset of integer arithmetic. On this basis, loop
increments can be found and thus can be the bounds
for all counter-based loops. If Bound-T is unable to
bound a loop automatically, the user is prompted to
provide an assertion containing the loop bound. The
tool will emit a warning for each instance, together with
the context of the loop in question. The assertions are
placed in an additional file. The decision for the ex-
ternal annotation is motivated by the need to support
multiple execution contexts for each function. Once the
call-graph has been constructed and the loop bounds
have been found, the actual worst-case execution path
is searched for.

On modern processors, the execution time of a par-
ticular instruction depends on the history of instruc-
tions that have previously been issued. Bound-T ig-
nores this by assuming constant execution times. The
calculation is performed by transforming the analysis
data into an ILP problem which is then passed to the
lp solve tool.

The assertion language was conceived to be flexible
enough to be used with programs written in both high-
level languages and assembler. Assertions are stated
for a specific scope (= subprogram, loop or call) which
are identified through their respective name or - in the
case of loops - their syntactical structure. This allows
for characterizations such as loops being nested inside
other loops and loops calling a particular subprogram.
An example of such a characterization is given in Fig-
ure 6.

1 loop_that
2 is_in (loop_that calls "Foo")
3 and contains (loop_that not calls "Bar"
4 and calls "Fee")
5 and not contains (loop_that calls "Fee2")
6 repeats 10 times end_loop

Figure 6. An example of a Bound-T annotation
as given in [12]

While Bound-T theoretically gains language and
compiler independence by using the object code as a
basis for annotations, there are also limitations that
arise from this design decision: because of the opti-
mization steps performed by the compiler, the annota-
tions are restricted to reference only program features
that can still be recognized after compilation. These
features (such as calls and loops, but not if-then-else
statements) are called anchors. A detailed description
can be found in [13], page 18.

4.7 The Annotation Language of aiT

Like Bound-T, the aiT WCET tool is a commer-
cially available tool for WCET analysis. It is devel-
oped by AbsInt Angewandte Informatik GmbH, Ger-
many, and is available for different hardware architec-
tures including ARM7, Motorola Star12/HCS12, and
PowerPC 555. The aiT tool reads binary files as input
programs to be analyzed. To make this more effective,
the tool supports a special kind of object code anno-
tations to reconstruct the control-flow graph from the
object code [8, 11]. They allow, for example, the user
to annotate the possible targets of a jump instruction
in order to guide the object-code parser when recon-
structing the flow graph.

aiT is not included in Table 1 and 2 since the focus
of this paper is on the annotation of feasible paths
in general. It is worth noting that the aiT tool also
includes a value analysis to automatically calculate
some flow information.

5 Discussion

In order to evaluate the annotation languages recon-
sidered in Section 4 we created benchmarks (Table 2)
covering the criteria developed in Section 2. These
benchmarks highlight the features and restrictions of
the respective languages.

Each benchmark Bi consists of a source program
and additional flow information that is specified infor-
mally. The first column of Table 2 describes for each
benchmark the flow information to be annotated. The
original source codes subject to annotation are given in
the second column of Table 2, their control-flow graphs
in the third column. The annotated examples for each
annotation language are presented in the subsequent
columns.

In the following, the most interesting results of ap-
plying these benchmarks to the annotation languages
of Table 2 are presented. Table 1 provides a summary
of our findings.

5.1 Expressiveness

In order to assess the expressive power of the anno-
tation language, it is necessary to understand the cal-
culation method that is implemented by the tool. We
thus begin with an overview about the different meth-
ods and will then assess how these methods apply to
the modelling of different kinds of flow information:

Calculation method. Timing schema, as imple-
mented by TAL, were the first approach to WCET
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Criteria
Method

TAL PL and
IDL

Linear
Flow Con-
straints

Bound-T SPARK
Ada

Symbolic
Annota-
tions

Annotation
Language
Challenge

Expressiveness Timing
schema

Regular
expressions

Constraint-
based

Constraint-
based

Loop-
annotations

-

Loop-bounds yes yes yes yes yes yes yes
Triangle-loops yes no yes some no yes yes
Context-sensitive yes no possible implicit modes no yes
Execution order no yes no no no no yes

Annotation placement External
TAL-script

Ideally
inside the
source code

Ideally
inside the
source code

External
file

Source
code
comments

Integral
part of the
source code

-

Object code
annotation

yes no no yes no no -

Host language Assembler,
some sup-
port from a
C-compiler

C, any
structured
language

Any
structured
language

C, Ada,
any
structured
language

Ada83 Any
structured
language

-

Programmer’s effort high mid-high mid-high mid low mid low

Tool support yes no yes commercial yes prototype yes

| {z }
See also Table 2.

Table 1. Assessment summary
analysis and provide little more than a unified frame-
work for the programmer to specify timing calculations
with.

This approach is refined by the graph-rewriting tech-
nique used in SPARK Ada. It must be noted, however,
that the expressiveness of SPARK Ada is limited, since
it restricts the permitted kinds of flow information to
loop-bounds.

IPET-based methods that use linear flow con-
straints, are widely regarded as state-of-the-art and al-
low a more versatile constraint-based specification of
flow facts. These constraints are then used as input for
an ILP solver. IPET-based tools still allow the specifi-
cation of loop-bounds, which can be transformed into
constraints easily.

As a unique feature, PL and IDL model execution
order naturally.

Loop-bounds. The minimal information necessary
to perform WCET analysis is an upper bound for every
loop construct; all discussed languages support this.

Triangle-loops. The IPET-based methods (linear
flow constraints and Bound-T) allow to specify inequal-
ities as further constraints in addition to loop-bounds.
With this method, so-called triangle-loops – these are
nested loops that follow a triangular pattern in the it-
eration space (i, j) – can be described precisely. In the
case of Bound-T, annotations of triangle-loops are only
possible when they contain an anchor feature to iden-
tify them, such as a call. These anchors are necessary
to identify program fragments in the object code.

Context-sensitive annotations. If loop bounds
depend on input parameters, the precision will ben-
efit from a tailored annotation for each calling context.
The parametrized calculation schema of TAL supports
this through a functional abstraction. While Bound-
T does not expose context-sensitive information to the
annotation language, it is aware of context informa-
tion during the automatic computation of loop bounds.
SPARK Ada has modes to describe multiple annota-
tions for a function depending on input parameters.

Execution order. Most WCET-calculation meth-
ods content themselves with estimates of the execution
frequency of basic blocks. If the method supports the
modelling of a complex2 hardware architecture, the ex-
ecution order is equally important. In contrast to the
PL and IDL, the IPET-based methods currently can-
not be used to describe the execution order.

5.2 Annotation Placement

Placing annotations directly inside the source code
is more convenient for the programmer, but may affect
the readability of the program, especially in the case
of library functions, which usually have many different
call sites. Incidentally, both surveyed tools that oper-
ate on the object code level (TAL and Bound-T) also
choose to place the annotations in a separate file. This

2 In complex hardware architectures the execution time of in-
structions depends on the execution history. Typical reasons for
this behavior are instruction pipelines, instruction/data caches
and processor parallelism.
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1: Benchmark Bi 2: Control flow graph 3: TAL

B1: Explicit exe-
cution order

Within each it-
eration of the
while-loop the
conditions of the
two if-statements
at line 5 and 10
evaluate both to
false or both to
true.

B2: Explicit exe-
cution frequency

The execution fre-
quency of the state-
ment at line 6 is
less or equal to that
of the statement at
line 8.

1 void cond(int a[],int b[])
2 {
3 int i=0, j=0;
4 while (i < 100) {
5 if (a[i] < 10)
6 j++;
7 else
8 a[i]=10;
9 i++;
10 if (b[i] < 10)
11 j++;
12 }
13 }

1

3

f1_3

4

f3_4

5

f4_5

13

f4_13

6

f5_6

8

f5_8

9

f6_9 f8_9

10

f9_10

11

f10_11

12

f10_12

f11_12

f12_4

f13_1

B1:
1 func TAL_cond(A_COUNT, B_COUNT) {
2 block blk1, blk6, blk8, blk11;
3 loop lp1;
4 blk1#begin= "-v-LA_1";
5 blk1#end = "-^-LA_13";
6 lp1#begin = "-v-LA_4";
7 lp1#count = 100;
8 lp1#end = "-^-LA_12";
9 blk6#begin= "-v-LA_6";
10 blk6#end = "-^-LA_7";
11 blk8#begin= "-v-LA_8";
12 blk8#end = "-^-LA_9";
13 blk11#begin = "-v-LA_11";
14 blk11#end = "-^-LA_12";
15 return(blk_1#time
16 -(min(0,100-A_COUNT)*blk6#time
17 -(min(100,A_COUNT) *blk8#time
18 -(min(0,100-B_COUNT)*blk11#time);
19 }

B2: not applicable

B3: Subranges of
loop iterations:

The output value is
y =

Pn
k=1 k with n

as input value.

1 int compute_sum(int n) {
2 int a=0, b=0, i=n, j, y;
3 while (i>0) {
4 a=a+1;
5 i=i-1;
6 j=i;
7 while (j>0) {
8 b=b+1;
9 j=j-1;
10 }
11 }
12 y=a+b;
13 return y;
14 }

1

2

f1_2

3

f2_3

4

f3_4

11

f3_11

5

f4_5

6

f5_6

7

f6_7

12

f11_12

8

f7_8

10

f7_10 13

f12_13

9

f8_9

14

f13_14

f9_7

f10_3

f14_1

1 func TAL_compute_sum(N) {
2 block blk1; loop lp3, lp7;
3 blk1#begin= "-v-LA_1";
4 blk1#end = "-^-LA_14";
5 lp1#begin = "-v-LA_3";
6 lp1#count = N;
7 lp1#end = "-^-LA_11";
8 lp2#begin = "-v-LA_7";
9 lp2#count = N-1;
10 lp2#end = "-^-LA_10";
11 blk7#begin= "-v-LA_7";
12 blk7#end = "-^-LA_10";
13 return(blk_1#time -
14 n*(n-1)/2 * blk7#time);
15 }

B4: Call-context
sensitive flow in-
formation

The loop bound of
the loop starting at
line 7 is 10 when
fa() is called from
fc() and 7 when it
is called from fb().

1 int fc(int m, int n) {
2 return fa(m) + fb(n);
3 }
4
5 int fa(int i) {
6 int j=0;
7 while (j<i) {
8 j++;
9 }
10 return j;
11 }
12
13 int fb(int i) {
14 return 8 + fa(i);
15 }

fc fafb

1

2

f1_2

3

f2_3

513

f3_1 6

f5_6

7

f6_7

8

f7_8

9

f7_9

f8_7

10

f9_10

14

f13_14

15

f14_15

1 /* To be called as TAL_fa(10); */
2 func TAL_fc() {
3 return TAL_fa(10) +
4 TAL_fb(7);
5 }
6 func TAL_fa(I_COUNT) {
7 block blk5; loop lp7;
8 blk5#begin = "-v-LA_5";
9 blk5#end = "-^-LA_11";
10 lp7#begin = "-v-LA_7";
11 lp7#count = I_COUNT;
12 lp7#end = "-^-LA_9";
13 return(blk_5#time);
14 }
15 func TAL_fb(I_COUNT) {
16 return TAL_fa(I_COUNT);
17 }

Table 2: Flow Information Benchmarks and Annotation Examples, Part I
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4: PL and IDL 5: Linear Flow Constraints (WCET-C) 6: Bound-T annotation
Path Language:
Loop-bound:
¬(∗L5∗) + ( L2( L5)100) !

B1:
(∗L6∗)∩(∗L11∗)+¬(∗L6∗)∩¬(∗L11∗)

B2:
The flow relation between L6 and L8
would need full path enumeration!

IDL Statements:
Loop-bound: loop L4 100 times
B1:
samepath(L6, L11)

B2:
The flow relation between L6 and L8
is not expressible!

Note: Lx means a reference to
line x of the original code

B1:

1 void cond (int a[], int b[]) {
2 int i=0, j=0;
3 WCET_SCOPE(s1) {
4 while (i < 100) WCET_LOOP_BOUND(100) {
5 if (a[i] < 10) {
6 j++;
7 WCET_MARKER(M1);
8 }
9 else {
10 a[i]=10;
11 WCET_MARKER(M2);
12 }
13 i++;
14 if (b[i] < 10)
15 j++;
16 }
17 WCET_RESTRICTION(M1 ≤ M2);
18 } /* scope s1 */
19 }

B2: not applicable

B1:

1 subprogram "cond"
2 loop
3 repeats 100 times;
4 end loop
5 end "cond"

Note: Due to the lack of anchors
in the original program, a finer
granularity is not possible

B2: not applicable

Path Language:
¬(∗L4∗) + ( L2( L4)0−n) !
¬(∗L8∗) + ( L6( L8)0−(n−1)) !

¬(∗L2 L8∗) + ( L2( L8)
n(n−1)

2 ) !

IDL Statements:
loop L3 n times
The inner loop has a variable loop
bound, which is not expressible!

execute L8 n(n−1)
2 times

inside L3;

1 #define N 100 /* max. value of n */
2 int compute_sum(int n) {
3 int a=0, b=0, i=n, j, y;
4 WCET_SCOPE(s1) {
5 while (i>0) WCET_LOOPBOUND(N) {
6 a=a+1;
7 i=i-1;
8 j=i;
9 while (j>0) WCET_LOOPBOUND(N-1) {
10 b=b+1;
11 j=j-1;
12 WCET_MARKER(M);
13 }
14 }
15 WCET_RESTRICTION(M ≤ (N*(N-1)/2));
16 } /* scope s1 */
17 y=a+b;
18 return y;
19 }

1 subprogram "compute_sum"
2 loop that contains (loop)
3 repeats N_MAX times;
4 end loop
5 loop that is in (loop)
6 repeats N_MAX-1 times;
7 end loop
8 end "compute_sum"

Note: This assumes that N MAX
is a known constant

Path Language:
¬(∗fb fa∗) + ( fb fa( L8)7) !
¬(∗fc fa∗) + ( fc fa( L8)10) !

IDL Statements:
loop L7 7 times

inside fb;
loop L7 10 times

inside fc;

1 int fc (int m, int n) {
2 return fa(m) + fb(n);
3 }
4
5 int fa (int i) {
6 int j=0;
7 /* specific loop bound for call
8 context fb(fa()) is not supported */
9 while (j<i) WCET_LOOP_BOUND(10) {
10 j++;
11 }
12 return j;
13 }
14
15 int fb (int i) {
16 return 8 + fa(i);
17 }

1 subprogram "fa"
2 loop
3 repeats ≤ 10 times
4 end loop
5 end "fa"

Note: According to [13], Bound-
T is able to perform context sen-
sitive analysis when loop bounds
depend on function parameters.
It is not possible to annotate
context-sensitive information di-
rectly.

Table 2: Flow Information Benchmarks and Annotation Examples, Part II
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is possibly due to the fact that the object code is en-
tirely overwritten by each compiler run, which would
prove tedious to the work flow.

Object code annotation. Bound-T and TAL follow
the approach to annotate the program at the object
code level. This low-level representation gains inde-
pendence from the compiler, but complicates the de-
velopment phase where the source code is frequently
changing. The interaction with the compiler is an im-
portant issue, as optimizations that change the control
flow may invalidate the annotations.

5.3 Host Language

Operating on the object code level yields another
kind of flexibility. This is independence of the host lan-
guage. This advantage, however, is hardly exploited.
For practical reasons, many of the surveyed tools focus
on subsets of the C language.

5.4 Programmer’s Effort

As mentioned above, there is a trade-off between
the expressiveness and the complexity of annotations.
A smarter tool, like Bound-T, may still reduce the
effort by automatically determining information such
as loop bounds. TAL is a good example for this effect;
although the programmer does not get much assistance
from the tools, it is at least in principle possible to
correctly describe the worst-case time behavior of any
program.

At the other end of the spectrum, there is
SPARK Ada, which is restricted to loop-bounds an-
notated directly into the source code.

5.5 Tool Support

Most of the surveyed annotation mechanisms stem
from an academic background, with Bound-T and aiT
being notable exceptions; they are currently being mar-
keted as commercial products. According to Praxis
High Integrity Systems, we may still see a future re-
lease3 of a SPARK Ada-based source code annotation
language.

In closing of our discussion, the findings summa-
rized in Table 1 illustrate that none of the anno-
tation languages we considered uniformly outperforms
its competitors, but instead have their own individ-
ual strengths and limitations. This became the more

3http://www.praxis-his.com/sparkada/examiner.asp

apparent, if we were to take further criteria into ac-
count, e.g., the possibility and ease of reconstructing
the control-flow graph on the object-code level such
that it precisely reflects its counterpart on the source-
code level [14] or the consideration of application do-
mains of annotation languages which go beyond pure
WCET analysis. An approach for the latter has e.g. re-
cently been proposed by Lisper [16]. Compared to the
languages we considered in this paper, the language he
proposes has a more state-oriented flavor. By its ex-
ecution counters the language especially allows to ex-
press execution frequencies, similar to the linear flow
constraints described above. In principle, the language
could also be used to describe explicit execution or-
ders, however, the resulting expressions will often be
very complex.

6 The WCET Annotation Language
Challenge

Reconsidering the annotation languages proposed
and used so far for WCET analysis and opposing their
key characteristics as summarized in Table 1 demon-
strate that all these languages have their own specific
profile of strengths and limitations. The demand for
an annotation language, which combines the individ-
ual strengths of the known annotation languages, while
simultaneously avoiding their limitations, is thus ap-
parent. In Table 1 this demand is reflected by the
right-most column denoted by “Annotation Language
Challenge.” It grasps the summarized strengths of the
different annotation concepts. Developing a language
(or an annotation concept), which enjoys this profile
is the central challenge, which we derive from our in-
vestigation, and which we would like to present to the
research community.

This challenge, however, is not the only challenge,
which is suggested by the findings of our investiga-
tion. It is obvious that an annotation language and
a methodology for computing the WCET of a program
based on annotations given in this language are highly
intertwined. Expressiveness delivered by an annotation
language, which cannot be exploited by a WCET com-
putation methodology, is in vain. Vice versa, the
power of a WCET computation methodology cannot
be evolved if the annotation language is too weak
to express the needed information. This mutual de-
pendence of annotation languages and WCET compu-
tation methodologies suggests two further challenges.
Which annotation language serves a given WCET com-
putation methodology best? And vice versa: which
WCET computation methodology makes the best use
of a given annotation language?
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Of course, the meaning of “best” has to be made
more precise to be practically useful. We argue that the
underlying notion of the relation “better” has several
dimensions, each of these leading to possibly different
solutions. Besides parameters like ease of use, we
consider the parameters of power and performance and
the trade-off between the two most important.

Summing up, this results in the following challenges :

1. Finding an annotation language, which enjoys the
individual strengths of the known annotation lan-
guages while avoiding their limitations.

2. Finding an annotation language, which serves a
given WCET computation methodology best.

3. Finding a WCET computation methodology,
which makes the best use of a given annotation
language.

It is worth noting that these challenges can be con-
sidered on various levels of refinement, depending for
instance on the notion of the relation “better” as dis-
cussed above. Thus, the challenges above represent a
full array of more fine-grained challenges rather than
exactly three individual challenges.

In order to foster research on these challenges and to
assess success, we consider the reference to a collection
of benchmark programs which reflect the intricacies of
annotating programs for WCET analysis, and of the
interaction of annotation languages and WCET com-
putation methodologies, most valuable. Ideally, these
programs should be taken from real world applications,
but stripped off from unnecessary detail; focusing on
just the very essence to demonstrate where current
annotation languages appear insufficient or inadequate
to cope with. We are planning to set up a web page
to host such a library of programs. In the long run we
hope that this results in a research community main-
tained and accepted library of benchmark programs for
assessing and evaluating the relative merits of anno-
tation languages and WCET computation methodolo-
gies and combinations thereof. In spirit this is similar
to the collection of benchmark programs proposed by
the organizers of the WCET Tool Challenge [9, 26]. In
fact, we consider it desirable to host such libraries in
close relationship to each other.

7 Conclusions and Perspectives

The power, the generality, and the ease of use of
tools for WCET analysis depend strongly on the kind
and the expressiveness of the annotation language used

to feed the tool with program-specific WCET infor-
mation. The choice of the annotation language is the
most crucial decision in the early stages of designing a
WCET analysis tool. This choice is not trivial. The
many conflicting properties an annotation language is
desired to enjoy, e.g. expressiveness vs. ease of usage
and analyzability, make the choice of a “good” lan-
guage indeed a challenge of its own. It is thus by no
means surprising that annotation languages attracted
so much attention by researchers working on WCET
analysis and that so many different approaches of anno-
tation languages have been proposed and used so far
for the implementation of WCET analysis tools.

In this paper we systematically reconsidered an ar-
ray of prototypical approaches which we consider path-
breaking or especially successful and important for the
advancement of the new and still fast developing field
of WCET analysis. The evaluation of these approaches
gives indeed evidence to our thesis that the definition of
a “good” annotation language is a challenge. Accord-
ing to our findings, which are summarized in Table 1,
none of the annotation languages turns out to be uni-
formly superior to its competitors, let alone to be with-
out deficiency. As discussed in Section 5, this becomes
the more apparent, if further criteria are taken into ac-
count such as the possibility and ease of reconstructing
the control-flow graph on the object-code level (cf. [14])
or the consideration of application domains of anno-
tation languages beyond pure WCET analysis (cf. [16]).

In spite of the indisputably successful use of so many
conceptually diverse annotation languages for WCET
analysis, all this indicates that the annotation lan-
guages proposed so far are still challenged in one way
or the other. It is this observation, which yields the
slogan and the invitation extended by this paper:

Contributing to

overcoming the challenged annotation languages
by mastering the annotation language challenge.

We consider the invention of an annotation lan-
guage, which enjoys the profile outlined in the right-
most column of Table 1 entitled “Annotation Language
Challenge”, as a milestone indicating the (partially)
successful mastering of this challenge (and its variants).
Particularly important for this will be advancements al-
lowing a refined handling of contexts, execution orders,
and interprocedural control-flow.

We believe that contributions towards mastering
this new challenge will be essential for the next ma-
jor step towards the further advancement of the field
as a whole. The annotation language challenge com-
plements the recently launched challenge for WCET
tools [9, 26]. In fact, it is motivated by it in part.
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We believe that contributions towards mastering the
annotation language challenge will also be a major step
towards enabling the delivery of the prospects related
to the tool challenge. Otherwise, the incompatibility
of the annotation languages and the tools using them
might soon turn out to be a significant obstacle for
truly meaningful and in-depth comparisons of WCET
tools.
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