Constraint solving for high-level WCET analysis*

Adrian Prantl¹, Jens Knoop¹, Markus Schordan², and Markus Triska¹

¹ Institut für Computersprachen,
Vienna University of Technology, Vienna, Austria
email: {adrian,knoop,triska}@complang.tuwien.ac.at

² University of Applied Sciences Technikum Wien, Vienna, Austria
email: schordan@technikum-wien.at

Abstract. The safety of our day-to-day life depends crucially on the correct functioning of embedded software systems which control the functioning of more and more technical devices. Many of these software systems are time-critical. Hence, computations performed need not only to be correct, but must also be issued in a timely fashion. Worst case execution time (WCET) analysis is concerned with computing tight upper bounds for the execution time of a system in order to provide formal guarantees for the proper timing behaviour of a system. Central for this is to compute safe and tight bounds for loops and recursion depths. In this paper, we highlight the TuBound approach to this challenge at whose heart is a constraint logic based approach for loop analysis.

1 Motivation

Embedded software systems are virtually ubiquitous today to control the functioning of technical devices we routinely use and rely on in our day-to-day life. Many of these systems are safety-critical. Think of applications in the avionics and automotive field such as fly-by-wire or its foreseeable companion technology drive-by-wire, where there is no longer any mechanical linkage between the pilot stick and the steering gear of an aircraft or the steering wheel and the tires of a car. Applications like these demonstrate that it is not only the comfort and convenience of our day-to-day life but also its safety, which depends crucially on the correct functioning of these systems. Many of these systems are also time-critical. This means that calculations performed by such a system need not only to be correct but also have to be issued in a timely fashion. Worst case execution time (WCET) analysis is concerned with providing formal guarantees for the proper timing behaviour of a system by computing tight upper bounds for the execution time of a system.

* This work has been partially supported by the Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen Forschung) under contract No P18925-N13, “Compiler Support for Timing Analysis”, http://costa.tuwien.ac.at/ and the 7th EU R&D Framework Programme under contract No 215068, “Integrating European Timing Analysis Technology” (ALL-TIMES).
State-of-the-art WCET analysis tools rely on supporting analyses to provide them with information on the execution behaviour of the program such as loop bounds or maximum recursion depths. Typically, both steps are performed on the binary code of the program. While this is in fact mandatory for the WCET analysis in the narrow sense in order to get an upper bound of the execution time of the code that is actually executed, it is not for the supporting analyses. This is important to note because it is usually more difficult to implement and perform the supporting analyses on the binary code of a program, since type or control-flow information, which is readily available in the source code, is not in the binary code; it also imposes a particular hardship on the programmer, when demanded to provide information manually as is occasionally necessary e.g. because of the undecidability of the involved analysis problems.

The TuBound approach [16], which we pursue in the CoSTA project [3], is to improve on this by lifting the supporting analyses for WCET analysis to the source code level of a program. The information computed on this level and annotated in the code is then conjointly transformed throughout the compilation and optimization of the program to the binary code level to make it accessible to the WCET analysis component of our TuBound tool. Currently, all optimizations are performed on the source code level, too. The transformed and optimized code is then fed into a specific WCET-aware [9] variant of the Gnu-C compiler [12], which is tailored for preserving the validity of code annotations it is provided with in the compiled code. The binary code it generates is finally passed to a retargetable WCET analysis component, which computes the desired upper bound of the execution time of the program in the worst case. Currently, this is the WCET analyzer CalcWCET [2].

The outcome of the recent participation of the TuBound tool in the 2008 WCET Tool Challenge, which has been held as a part of the 8th International Workshop on Worst-Case Execution Time Analysis (WCET’08) shows the practicality and the power of the TuBound approach and tool [11]. Analyzing the results of the WCET Tool Challenge shows that the key to the success of the TuBound tool is the generality and precision of the constraint logic based approach for loop analysis to fully automatically compute safe and tight loop bounds and flow constraints for most of the benchmark programs subject to this challenge [5]. The usage of logic and constraint-logic programming was fundamental to achieve this and to obtain a stable prototype in short time and with moderate effort.

In this paper, which is an elaborated version of a recent oral presentation [15] at the Workshop on Resource Analysis (ResAn’08), we focus on the essence of our constraint-logic based loop analysis and its implementation in Prolog. Below, we present a summary of key components of the TuBound tool including our constraint-logic solver, before presenting our constraint-logic based loop analysis in detail.
2 TuBound Architecture: Key Components

2.1 SATIrE, ROSE and PAG

Most important to implementing the source-to-source analysis and optimization approach of TuBound are the usage and integration of the SATIrE, LLNL-ROSE, and PAG systems of TU Vienna, Lawrence Livermore National Laboratory (LLNL) and AbsInt GmbH, respectively [17,4,13]. SATIrE is the Static Analysis Integration Engine [18], which seamlessly connects the C++ source-to-source compiler infrastructure LLNL-ROSE [19] with the Program Analysis Generator PAG [13]. In TuBound, this enables us to create data-flow analyses which operate on the abstract syntax tree (AST) of C++ programs. Moreover, SATIrE supports the import and export of an external term representation of the AST using Prolog syntax. This term representation is automatically annotated with any results from preceding analysis steps and contains all necessary information to correctly unparse the program, including line and column information for each expression. This term representation is the key to specifying analyses and program transformations in Prolog, which we make strong use of in TuBound. We are thereby benefitting from many advantages over using C++ for the specification, including pattern matching and access to tools and methods offered by the world of logic programming. Most outstandingly, in TuBound this has been used to implement a flow constraint analysis by means of our generalized finite domain constraint solver (cf. Section 2.2), a loop bound analysis written in SWI-Prolog (cf. Appendix), and an interprocedural interval analysis specified with PAG [13] (cf. Appendix).

2.2 CLP(FD)

Generally speaking, constraint logic programming over finite domains, denoted as CLP(FD), is a declarative formalism for modeling and solving combinatorial problems over integers. A constraint satisfaction problem (CSP) consists of:

- a set X of variables, $X = \{x_1, \ldots, x_n\}$
- for each variable x_i, a set $D(x_i)$ of values that x_i can assume, which is called the domain of x_i
- a set of constraints, which are simply relations among variables in X, and which can further restrict their domains.

In TuBound, we use the solver library clpfd [20]. This is a generalised CLP(FD) solver that we developed, and which was recently included in the SWI-Prolog distribution [21]. Two new features which are implemented in this solver make it especially well-suited for the loop analysis presented in Section 3.2: First, the solver can reason over arbitrarily large integers, and can thus also be used to analyse a large number of nested loops that can range over large bounds. Second, constraint propagation in our solver always terminates. While this weakens propagation when domains are still unbounded, this property guarantees that the loop analysis itself always terminates. It is this property, which makes the clpfd solver particularly useful for the TuBound approach described next.
3 Loop constraint analysis in TuBound

3.1 Preliminaries

TuBound derives loop bounds and constraints for iteration-variable based loops. This type of loop is very common in embedded applications. The debie program [11], a real-world space-craft control system used in the WCET tool challenge, for example, contains 88% iteration-variable based loops. We call a loop L iteration-variable based if

- it is preceded by an initialization statement \([i := a]^{l_1}\),
- it contains at least one exit condition \([i rel b]^{l_2}\),
- it contains exactly one monotone iteration step statement \([i := i + c]^{l_3}\),

where \(i\) is an integer variable that is not a field member with a scope larger than the loop body \((L \subseteq \text{scope}(i))\). The labels \(l_1, l_2, l_3\) are used to reference these statements.

We assume that the program has been run through an interval analysis\(^3\) that generates variable-interval pairs for each variable \(v\) at each sequence point, denoted \(v_{\{\min, \max}\}\). In order to classify the results, we call the value of a variable at a given location loop invariant, if the value does not change over all paths through \(L\). We call the value of a variable constant, if \(v_{\min} = v_{\max}\). This implies that every constant variable is also loop invariant. Having this information, we can verify that the loop satisfies the following safety conditions:

\(C1.\) There is no statement \(s \in L \setminus \{l_1, l_2, l_3\}\) where \(i\) appears on the left-hand side.

\(C2.\) There is no statement \(s \in \text{scope}(i)\) in that the address of \(i\) is taken.

\(C3.\) The loop must not be an infinite loop, i.e. the analyzable intervals of \(a\) and \(b\) must either be disjoint or overlapping in at most one value. Further, the direction of the loop must be unambiguous \((\text{sgn}(c_{\min}) = \text{sgn}(c_{\max}))\) and the property \(\text{sgn}(b - a) = \text{sgn}(c_{\min})\) must hold.

\(C4.\) The exit condition’s relational operator \(rel\) must induce a partial order \(\{\leq, \geq\}\). For equivalence operators \(\{=, \neq\}\) it is also necessary to prove that the loop terminates at all, before they can safely be replaced with \(\{\leq, \geq\}\). For the case that \(a, b, c\) are loop invariant and constant,

\[b - a \pmod{c} \equiv 0\]

is a sufficient condition for termination. The operators < and > can be transformed by adding \(\pm 1\) to \(b\).

\(^3\) This analysis is implemented in TuBound, too, but it is beyond the core focus of this paper. Details can be found in the Appendix.
3.2 The constraint analysis for nested loops

TuBound contains an implementation of a loop-bound algorithm that works for nested loops. If the iteration space described by the iteration variables is rectangular or cuboid-shaped, the resulting bounds will even be optimal. Often, however, the iteration variables of nested loops depend on each other, forming e.g. a triangular iteration space. Loop bounds would then be an overestimation of the iteration space, describing the enclosing rectangle. It is thus desirable to formulate more general flow constraints in addition to loop bounds. The flow constraints we are generating describe the execution counts of the loop bodies in relation to the scope containing the outermost loop. Our constraint analysis works by transforming the whole loop nest into finite domain logic constraints.

Each loop in the loop nest must be iteration-variable based. In contrast to the traditional loop bound analysis, a few additional restrictions are imposed on the loop: The step size must be loop invariant. When the loop has a stride greater than 1 ($|c| > 1$), a should be constant. Otherwise the results produced by the analysis will be an overestimation which is bounded by a factor of $a_{\text{max}} - a_{\text{min}}$. Furthermore, the exit test expression must either test for \leq or \geq; $a < b$ can be transformed into the equivalent $a \leq b - 1$.

The algorithm works recursively, beginning with the outermost loop. First, a new logic variable I is created that is associated with the iteration variable. Then, the init, test and step statements are translated into constraints, as sketched in Table 1. The remaining arithmetic expressions can then recursively be translated into corresponding constraints. After the constraints are posted, the constraint solver is used to report the number n of possible combinations of all iteration variables that were encountered so far. Since explicit enumeration of all solutions can be infeasible, we added a new labeling option $upto_in$ to our constraint solver, which can be used to count the number of possible instantiations if all remaining constraints are trivial. With this method, the running time and memory consumption of the solver is no longer depending on the size of the iteration space.

The resulting n is then an upper bound for the number of times the current (=innermost regarded) loop is executed relative to the scope containing the outermost loop. If the constraint analysis is applied to a single loop only, the resulting constraint degenerates into a loop bound.

By using this approach, we can leverage a great deal of features from our constraint solver for the loop analysis:

<table>
<thead>
<tr>
<th>Direction</th>
<th>Init</th>
<th>Test</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>$I #>= \text{InitExpr}$</td>
<td>$I #<= \text{TestExpr}$</td>
<td>$(I-\text{InitExpr}) \mod \text{StepExpr} #= 0$</td>
</tr>
<tr>
<td>down</td>
<td>$I #<= \text{InitExpr}$</td>
<td>$I #>= \text{TestExpr}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Deriving the constraints
The order in which the constraints are posted does not influence the behaviour of the solver.

The termination of the constraint solver is guaranteed.

The strategy of the solver can be customized through labeling options to improve its efficiency (cf. Section 3.3).

Through the implicit enumeration of the iteration space the results are generally more precise than those of the traditional loop bound analysis.

Since much of the complexity is offloaded into the constraint solver, the implementation is very concise and easy to maintain.

3.3 Example

We illustrate the general principle using the following loop nest, for which we want to determine the number of times the inner loop is executed:

```plaintext
for (i = 0; i < 10; ++i)
    for (j = i; j > 0; j -= 2)
```

By translating the loop nest accordingly, we get the following constraint program:

```plaintext
I #>= 0, I #< 10, I mod 1 #= 0,
J #=< I, J #> 0, (J-I) mod 2 #= 0,
findall((I,J),labeling([], [I,J]), IS),
length(IS, IterationCount).
```

By solving the constraint system, we explicitly enumerate the iteration space IS described by (i,j):

```
[ (1, 1),
  (2, 2),
  (3, 1), (3, 3),
  (4, 2), (4, 4),
  (5, 1), (5, 3), (5, 5),
  (6, 2), (6, 4), (6, 6),
  (7, 1), (7, 3), (7, 5), (7, 7),
  (8, 2), (8, 4), (8, 6), (8, 8),
  (9, 1), (9, 3), (9, 5), (9, 7), (9, 9) ]
```

The number of pairs in the iteration space is then an upper bound for the innermost loop body. In our case, exactly 25 times. For larger bounds, explicit enumeration of all solutions is infeasible. We therefore added a new labeling option to our constraint solver, which can be used to count the number of possible instantiations if all remaining constraints are trivial. Thus we can reduce or avoid explicit enumeration in many cases. For example:

```plaintext
I #>= 0, I #=< 10000,
J #>= 0, J #=< 500,
labeling([upto_in(IterationCount)], [I,J]).
```

yields IterationCount = 5010501.
4 Experimental results

To evaluate the constraint analysis, we compare its power with that of a pure loop bound analysis. This second analysis was implemented at an earlier stage and is also part of TuBound (cf. Appendix). The loop bound analysis works by solving linear equations that are derived from the loop parameters.

We are using the standardized WCET benchmark suite from Mälardalen University [1], consisting of over 30 prototypical embedded programs and the debie benchmark from the WCET Tool Challenge 2008 [11]. Since the prerequisites for applying the constraint analysis are slightly more restrictive than for the loop bound analysis, we expect the constrained loops to be a subset of the bounded loops. This is confirmed by the results, which are shown in Table 2 for the Mälardalen University benchmarks and in Table ?? for the debie benchmark.

The first column lists the name of the benchmark, the second column the number of loops that are contained in that benchmark. Column three gives the percentage of loops that could be analyzed with the traditional loop bound algorithm discussed in the Appendix. The running times of the algorithm in seconds\(^4\) is shown in the next column. The last two columns contain the percentage of loops that could be analyzed with the constraint analysis and the corresponding running times. From examining the table we can see that the constraint analysis can analyze almost 90\% of the loops that are analyzable with the traditional approach and more than 70\% of all loops contained in the benchmarks. Moreover, the constraint analysis inherently outperforms the traditional approach on nested loops with non-rectangular iteration space, due to the higher expressivity of flow constraints.

When comparing the runtime performance of the two approaches, it is apparent that the loop bound analysis mostly depends on the depth of the init, test and step expressions, whereas the worst-case running time of the constraint analysis is correlated with the size of the iteration space, if the solver has to fall-back to enumeration. For typical embedded code that we target with TuBound, this has little significance, since analyzing even the outliers is a matter of seconds. The average execution time of both analyses together is well below one second on current hardware. Methods like in [6] could be used to complement this with a more theoretical performance statement.

5 Conclusion and perspectives

We have presented our design and implementation for a generalized loop constraint analysis, which plays an important role as a supporting analysis in our WCET analysis tool, TuBound. Our results demonstrate that this analysis can determine tighter flow constraints for nested loops than our traditional loop bound analysis.

\(^4\) Measurements were made on a 3 GHz Xeon, running SWI-Prolog 5.6.59 under Linux.
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Loops</th>
<th>Loopbounds</th>
<th>Runtime</th>
<th>Constraints</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>adpcm</td>
<td>18</td>
<td>83.3%</td>
<td>0.02s</td>
<td>83.3%</td>
<td>0.02s</td>
</tr>
<tr>
<td>bs</td>
<td>1</td>
<td>0%</td>
<td>< 0.01s</td>
<td>0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>bsort100</td>
<td>3</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>cnt</td>
<td>4</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>compress</td>
<td>7</td>
<td>28.5%</td>
<td>0.01s</td>
<td>14.2%</td>
<td>0.08s</td>
</tr>
<tr>
<td>cover</td>
<td>3</td>
<td>100.0%</td>
<td>0.01s</td>
<td>100.0%</td>
<td>0.01s</td>
</tr>
<tr>
<td>crc</td>
<td>3</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>des</td>
<td>10</td>
<td>90.0%</td>
<td>0.09s</td>
<td>90.0%</td>
<td>0.09s</td>
</tr>
<tr>
<td>duff</td>
<td>2</td>
<td>50.0%</td>
<td>< 0.01s</td>
<td>50.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>edn</td>
<td>12</td>
<td>100.0%</td>
<td>0.02s</td>
<td>91.6%</td>
<td>0.05s</td>
</tr>
<tr>
<td>expint</td>
<td>3</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>fdct</td>
<td>2</td>
<td>100.0%</td>
<td>0.01s</td>
<td>100.0%</td>
<td>0.01s</td>
</tr>
<tr>
<td>fft1</td>
<td>11</td>
<td>54.5%</td>
<td>< 0.01s</td>
<td>18.1%</td>
<td>0.41s</td>
</tr>
<tr>
<td>fibcall</td>
<td>1</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>fir</td>
<td>2</td>
<td>50.0%</td>
<td>0.03s</td>
<td>50.0%</td>
<td>0.03s</td>
</tr>
<tr>
<td>insertsort</td>
<td>2</td>
<td>50.0%</td>
<td>< 0.01s</td>
<td>0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>janne_complex</td>
<td>2</td>
<td>50.0%</td>
<td>< 0.01s</td>
<td>0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>jfdctint</td>
<td>3</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>lcdnum</td>
<td>1</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>lms</td>
<td>10</td>
<td>60.0%</td>
<td>0.02s</td>
<td>60.0%</td>
<td>0.01s</td>
</tr>
<tr>
<td>ludcmp</td>
<td>11</td>
<td>100.0%</td>
<td>0.01s</td>
<td>81.8%</td>
<td>0.01s</td>
</tr>
<tr>
<td>matmult</td>
<td>5</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>minver</td>
<td>17</td>
<td>94.1%</td>
<td>0.01s</td>
<td>82.3%</td>
<td>0.28s</td>
</tr>
<tr>
<td>ndes</td>
<td>12</td>
<td>100.0%</td>
<td>0.04s</td>
<td>100.0%</td>
<td>0.04s</td>
</tr>
<tr>
<td>ns</td>
<td>4</td>
<td>100.0%</td>
<td>0.02s</td>
<td>100.0%</td>
<td>0.02s</td>
</tr>
<tr>
<td>nsichneu</td>
<td>1</td>
<td>0%</td>
<td>0.06s</td>
<td>0%</td>
<td>0.06s</td>
</tr>
<tr>
<td>qsort-exam</td>
<td>6</td>
<td>0%</td>
<td>< 0.01s</td>
<td>0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>sqrt</td>
<td>1</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>recursion</td>
<td>0</td>
<td>–</td>
<td>< 0.01s</td>
<td>–</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>select</td>
<td>4</td>
<td>0%</td>
<td>< 0.01s</td>
<td>0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>state mate</td>
<td>1</td>
<td>0%</td>
<td>0.02s</td>
<td>0%</td>
<td>0.03s</td>
</tr>
<tr>
<td>sqrt</td>
<td>1</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>st</td>
<td>5</td>
<td>100.0%</td>
<td>< 0.01s</td>
<td>100.0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>whet</td>
<td>10</td>
<td>100.0%</td>
<td>0.01s</td>
<td>80.0%</td>
<td>0.02s</td>
</tr>
</tbody>
</table>

Total Percentage 80.8% 72.3%

Table 2. Results for the Mälardalen WCET benchmark suite
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Loops</th>
<th>Loopbounds</th>
<th>Runtime</th>
<th>Constraints</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>2</td>
<td>100.0%</td>
<td>0.01s</td>
<td>50.0%</td>
<td>0.01s</td>
</tr>
<tr>
<td>hw_if</td>
<td>3</td>
<td>100.0%</td>
<td>0.01s</td>
<td>33.3%</td>
<td>0.33s</td>
</tr>
<tr>
<td>classtab</td>
<td>0</td>
<td>–</td>
<td>0.01s</td>
<td>–</td>
<td>0.01s</td>
</tr>
<tr>
<td>measure</td>
<td>14</td>
<td>85.7%</td>
<td>0.02s</td>
<td>71.4%</td>
<td>0.02s</td>
</tr>
<tr>
<td>debie</td>
<td>1</td>
<td>0%</td>
<td>< 0.01s</td>
<td>0%</td>
<td>< 0.01s</td>
</tr>
<tr>
<td>tc_hand</td>
<td>13</td>
<td>92.3%</td>
<td>0.03s</td>
<td>92.3%</td>
<td>0.03s</td>
</tr>
<tr>
<td>harness</td>
<td>43</td>
<td>76.7%</td>
<td>0.08s</td>
<td>76.7%</td>
<td>0.08s</td>
</tr>
<tr>
<td>telem</td>
<td>6</td>
<td>100.0%</td>
<td>0.01s</td>
<td>66.6%</td>
<td>0.31s</td>
</tr>
<tr>
<td>health</td>
<td>11</td>
<td>81.8%</td>
<td>0.03s</td>
<td>63.6%</td>
<td>2.30s</td>
</tr>
</tbody>
</table>

Total Percentage 82.6% 72.1%

Table 3. Results for the debie WCET benchmark suite

Loop bound and constraint analysis together succeed in analyzing both standardized benchmarks and real-world programs such as the debie spacecraft control system used in the WCET Tool Challenge 2008 [11], with only a handful of necessary manual annotations remaining.

Since the constraint analysis can also be adopted to derive loop bounds, we plan to replace the traditional loop bound analysis implementation by the constraint analysis eventually. Moreover, by offloading complexity into a separately maintained library, the analysis will automatically benefit from future improvements made to the solver. Thanks to its clean interface, we also retain the possibility to switch to different constraint solvers in the future.

References

3. The COSTA project. http://costa.tuwien.ac.at/.

Interval Analysis

The interval analysis is an interprocedural data-flow problem. The variant we implemented in TuBound is an extension of the constant propagation analysis specified by Nielson, Nielson and Hankin [14]. Earlier work on interval analysis, also called value range propagation, was done by Harrison [10] and also by Cousot and Cousot [8]. The design parameters are sketched in Table 4. Just as constant propagation, the interval analysis is a forward-directed data-flow problem. The carrier of the analysis is a lattice of pairs of integers that are mapped to each integer variable. The members of the pairs denote the lower and upper bounds of the variables, respectively. If a bound is unknown, it is reported as $\pm\infty$. The \bot element of the lattice means that a value has not yet been calculated, whereas \top represents an unknown bound, which is equivalent to $(-\infty, \infty)$. At a control-flow join, the combine function is applied pairwise for each variable and merges the interval information coming from the different branches. The transfer functions for each statement capture the ramifications of the statement on the State lattice by abstractly interpreting the statement with interval arithmetic (function A_{Itvl}) [7]. The widening operator, which is used to speed up the fixed-point search is defined very aggressive, and can be used to fine-tune the trade-off between execution speed and analysis precision.

The transfer functions for conditional branches return different results for the true and false edges. If the branch condition statically evaluates to either $(1,1)$ or $(0,0)$, the state for the other branch is set to \bot, such that dead code can not influence the analysis result for live branches.

The accuracy of the interval analysis can further be improved by increasing the memory and run-time budget. It can be modified to report a set of possible intervals instead of one merged interval for each variable.

Traditional loop bound analysis

The loop bound analysis is a control flow insensitive analysis that builds upon the results of the above interval analysis. The analysis takes as input

1. an iteration-variable based loop L,
2. variable intervals
3. and context information (such as the scope of i).

The analysis works on all iteration-variable based loops, with the restriction that the step size must be either positive or negative:

$$\text{sgn}(\text{step}_{\text{min}}) = \text{sgn}(\text{step}_{\text{max}})$$

The result of the analysis is an upper bound n for the number of times the loop entry is executed in relation to its direct predecessor statements outside of the
Direction: \textit{forward}

Lattice: \hspace{1cm} State = (Var \to (\mathbb{Z}^{-\infty}, \mathbb{Z}^{\infty}), \sqsubseteq, \sqcup, \sqcap, \bot, \lambda x. (-\infty, \infty))

Init function: \hspace{1cm} \lambda x. (-\infty, \infty)

Combine function: \hspace{1cm} \text{comb}(\text{min}(a_{\min}, b_{\min}), \text{max}(a_{\max}, b_{\max})) = (\text{min}(a_{\min}, b_{\min}), \text{max}(a_{\max}, b_{\max}))

Widening operator: \hspace{1cm} \text{widen}(\text{min}(a_{\min}, b_{\min}), \text{max}(a_{\max}, b_{\max})) = (c_{\min}, c_{\max})

where\hspace{1cm}c_{\min} = \begin{cases} a_{\min} \text{ if } a_{\min} = b_{\min} \\ -\infty \text{ otherwise} \end{cases}

\hspace{1cm}c_{\max} = \begin{cases} a_{\max} \text{ if } a_{\max} = b_{\max} \\ \infty \text{ otherwise} \end{cases}

Transfer functions: \hspace{1cm} x : = a : \text{Itvl}^l(\sigma) = \begin{cases} \bot \text{ if } \sigma = \bot \\ \sigma[x \mapsto \text{Itvl}[a]\sigma] \text{ otherwise} \end{cases}

\hspace{1cm} [\text{if}(c)]^l_{\text{edge}} : \text{Itvl}^l(\sigma) = \begin{cases} \bot \text{ if } \sigma = \bot \\ f_{\text{Itvl}}^l(\sigma), [c]^l\text{ otherwise} \end{cases}

\hspace{1cm} \text{where} \hspace{1cm} \text{Itvl}[x]\sigma = \sigma(x) \\
\hspace{1cm} \text{Itvl}[n]\sigma = (n, n) \\
\hspace{1cm} \text{Itvl}[a \text{ op } b]\sigma = \text{Itvl}[a]\sigma \text{ op } \text{Itvl}[b]\sigma

Interval arithmetic: \hspace{1cm} +\text{Itvl}(a, b) = (a_{\min} + b_{\min}, a_{\max} + b_{\max}) \\
\hspace{1cm} -\text{Itvl}(a, b) = (a_{\min} - b_{\max}, a_{\max} - b_{\min}) \\
\hspace{1cm} \cdot\text{Itvl}(a, b) = (\text{min}(a_{\min} \cdot b_{\min}, a_{\min} \cdot b_{\max}), \text{max}(a_{\max} \cdot b_{\min}, a_{\min} \cdot b_{\max})) \\
\hspace{1cm} /\text{Itvl}(a, b) = (\text{min}(a_{\min} / b_{\min}, a_{\min} / b_{\max}), \text{max}(a_{\max} / b_{\min}, a_{\min} / b_{\max})) \\
\hspace{1cm} =\text{Itvl}(a, b) = \begin{cases} a_{\min} = b_{\min} \text{ if } a_{\min} = a_{\max} \land b_{\min} = b_{\max} \\ \bot \text{ otherwise} \end{cases}

\hspace{1cm} \neq\text{Itvl}(a, b) = \begin{cases} a_{\min} \neq b_{\min} \text{ if } a_{\min} = a_{\max} \land b_{\min} = b_{\max} \\ \bot \text{ otherwise} \end{cases}

\hspace{1cm} <\text{Itvl}(a, b) = \begin{cases} \text{true if } a_{\max} < b_{\min} \\ \text{false if } a_{\min} \geq b_{\max} \\ \bot \text{ otherwise} \end{cases}

...
loop, where \(\text{excnt}(s) \) denotes the execution count of statement \(s \):

\[
\sum_{p \in \text{pred}(c) \setminus L} \text{excnt}(p) \leq n \ast \text{excnt}(c)
\]

Since the discrete function described by the iteration step statement is monotone and its gradient is constant, we can set up the following equation for the loop bound:

\[
n = \frac{\text{val}_{\text{max}} - \text{val}_{\text{min}}}{|\text{val}_{\text{stepsize}}|}
\]

where \(\text{val}_{\text{min}}, \text{val}_{\text{max}} \) are lower and upper bounds for \(i \), whereas \(\text{val}_{\text{step}} \) is the minimum step size of \(i \) on a path through the loop \(L \). We call these values \textit{loop parameters}. To derive the loop parameters, it is necessary to examine the relational operator of the exit condition, which must be one of \(<, >, \leq, \geq\).

<table>
<thead>
<tr>
<th>case rel of</th>
<th>(<): LowExpr = a, HighExpr = b</th>
<th>(\leq): LowExpr = a, HighExpr = b + 1</th>
<th>(>): LowExpr = b, HighExpr = a</th>
<th>(\geq): LowExpr = b, HighExpr = a - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{StepExpr} = c)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\textbf{Table 5. Deriving the loop parameters}

As shown in Table 5, the assignment of \textit{LowExpr} and \textit{HighExpr} depends on the direction of the loop. In our implementation, concrete values of the loop parameters are calculated in two phases:

1. \textit{Simplify}. In this phase, algebraic identities are exploited to simplify the expression \((\text{HighExpr} - \text{LowExpr})/\text{StepExpr}\). This is implemented by a set of rewrite rules that are applied to the expression until a fixed point is reached. This simplification operates on purely symbolic expressions and disregards the analyzed intervals of variables. It can, however, use the information that an expression is \textit{loop invariant} or \textit{constant}, i.e. no variable occurring in it appears on the left-hand side of any statement in \(L \).

2. \textit{Evaluate}. Using the results of the interval analysis as state, we can evaluate the simplified expression using interval arithmetic [7] \((A_{Itvl})\). The return value is an interval \((m, n)\) where \(n \) is the upper bound for the iteration count of the loop \(L \).

The complexity of this algorithm is bounded by the number of exit conditions in the loop, the depth of \textit{Low}, \textit{High} and \textit{Step} expressions and the number of rules in the simplification term replacing system.